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Abstract

Real-world machine learning datasets may be highly complex. Data of a single class

may be distributed irregularly throughout the feature space and measures of distance as a

proxy for similarity can be unreliable. Classification learning algorithms for such datasets

typically require model selection, which in practice is often an ad-hoc and time-consuming

process that depends on assumptions about the structure of data. To avoid this, I introduce

the ensemble of prototype support vector machines (PSVMs). This algorithm trains an

ensemble of linear SVMs that are tuned to different regions of the feature space and thus

are able to separate the space arbitrarily, reducing the need to decide what model to use

for each dataset. I also present experimental results demonstrating the efficacy of PSVMs

in both noiseless and noisy datasets.
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Chapter 1

Introduction

The goal of classification is to accurately predict class labels for a set of data. In machine learning,

this is accomplished via algorithms that learn classification models for particular types of class

distributions from sets of labeled training data. However, in real-world datasets, class distributions

may be highly complex, and they are not generally known before learning takes place. Hence a data

mining practitioner must choose an algorithm and its associated model without prior knowledge

about the class distributions of the dataset in question, which often requires testing multiple models

to find one that works well (Chatfield, 1995). The process of model selection, which is already

arbitrary and time-consuming, becomes even more problematic for datasets with the most difficult

class distributions, in which standard learning algorithms tend to over- or underfit.

This thesis introduces the ensemble of prototype support vector machines. This algorithm per-

forms classification in datasets with complex class distributions without the need for model selec-

tion. Central to this approach is the use of multiple linear models positioned according to the actual

distribution of the training data, which provides the flexibility needed to accurately model class

boundaries of potentially high complexity. Experimental results demonstrate that this algorithm on

average performs as well as or better than other classifiers in a number of different datasets.

1.1 Motivation

In supervised machine learning, algorithms learn a classifier for a set of training data whose true

class labels have been provided, with the hope that this classifier will accurately predict class labels

for novel unlabeled data. The data is represented as points in some feature space, where each

component represents some attribute of the input data. Hence we can think of the classifier as a

model or function that partitions the feature space into different regions corresponding to the data

points of different classes.

Many learning algorithms and their corresponding models are highly accurate fits to certain types

of class distributions. For example, many datasets are linearly separable, so choosing an algorithm

that learns the equation of a hyperplane, such as a perceptron or a support vector machine (SVM)

(Cortes and Vapnik, 1995), is sufficient to model that data accurately. A practical task that generally

has linearly separable data is text classification, to which linear SVMs have been successfully applied

(Joachims, 1998). Similarly, data that can be separated by polynomials or other functions can be
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Figure 1.1: Some illustrations of how model selection can be problematic. Each column depicts the
same dataset. The top row shows two models, namely a linear separator and axis-aligned rectangles,
that accurately capture the class distributions, while the bottom row shows that the same two models
applied to the “wrong” dataset do not fit the data as well. In particular, axis-aligned rectangles
learned in the left dataset do not generalize to the white test instance of the triangle class. On the
other hand, a linear classifier in the right dataset is not capable of separating the classes in even the
training set.

modeled by nonlinear SVMs with the appropriate kernel function; see Chapter 3 for details.

More complicated class distributions, such as ones where multiple noncontiguous regions are

mapped to the same class, can also be modeled given the correct choice of algorithm. For example,

C4.5 is a common decision tree learning algorithm that learns axis-aligned rectangles in different

parts of the feature space (Quinlan, 1993). C4.5 has been successfully used to diagnose errors

in telephone networks, where data tends to occur in small clusters in the feature space (Danyluk

and Provost, 1993). Combinations of multiple base classifiers allow for even more possibilities for

modeling complicated distributions.

However, regardless of how aptly a given model captures a particular class distribution, choosing

an inappropriate model can still result in poor classification performance. Figure 1.1 displays some

examples of this, showing how linear separators and axis-aligned rectangles can be very accurate

in some datasets, but perform poorly when applied to datasets for which they are not suitable.

While visualizing the data, as we do here, would help with the model-selection problem, the feature

spaces of most datasets are generally of higher dimension than two or three. In addition, we must

assume that class distributions in real-world datasets can be arbitrarily complicated; there may be
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Figure 1.2: Model selection is even more
difficult in datasets with complex class dis-
tributions. For example, here neither the
linear classifier nor the axis-aligned rectan-
gles are particularly suitable models of the
class boundaries; the former underfits and
the latter appears to overfit.

The true class distribution seems to be
best captured by a pair of lines, as indi-
cated in the bottom diagram; but unless
one knows ahead of time to try this model,
it may never be discovered. Note that while
it is helpful to illustrate these issues with
two-dimensional depictions, in reality few
datasets are two-dimensional, and hence a
data mining practitioner is unable to visu-
alize datasets with possibly highly compli-
cated distributions, and hence is unlikely
to have any intuition about what models
to try.
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no a priori reasons to assume any kind of mathematically elegant structure to the data. In these

extremely complex datasets, many common classifiers, including linear separators and decision trees,

make assumptions that are too restrictive to allow them to capture the data adequately.

It is important to note that every learning algorithm has some inductive bias that limits the set

of possible models it explores; the space of all possible hypotheses is simply too vast to exhaustively

search. Furthermore, there are almost always multiple models that fit the training data, and so any

learner needs a way to choose among them. Thus it is unreasonable to expect an algorithm to be

completely agnostic towards the structure of the data in question. The point is that choices about

what learning algorithm to use, and hence what model to learn, must happen prior to training and

generally without knowledge of what data distributions look like. In many cases, this forces the

practitioner to simply train and test multiple algorithms in order to discover which one performs

the best, a time-consuming and ad-hoc process.

The issue is not simply resolved by choosing the most general or flexible class of models possible

(with the reasoning that, for instance, linear functions are a subset of polynomial functions). There

are two main problems that influence model choice in opposing ways. One is underfitting, which

happens when the model is too simple and does not capture the full complexity of the data distri-

bution. The other is overfitting, which happens when the model is too complex and fits noise in

the training data; such a model does not generalize well to novel instances. Figure 1.2 shows some

examples of these issues. The need to balance complexity of the model with accurate approximation

of the true class distribution makes the problem of model selection much more subtle than it might

seem at first glance.

Domain-specific knowledge about the data can conceivably help guide the model-selection pro-

cess. However, it is unrealistic to expect a domain expert to have any intuition about a huge

many-dimensional dataset, even if he has some understanding about the systems that generated it.

Furthermore, while human intuition is a good guide, one of the benefits of machine learning is the

ability to explore potentially fruitful hypotheses about data that human judgement would not nec-

essarily consider. One tenet of machine learning is that large quantities of data contain information

about underlying processes or properties, and that it is possible to create algorithms to extract that

information. Eliminating model selection is just one way of trying to extract even more information

from the data itself without human guidance.

1.2 Contributions

In this thesis, I introduce the ensemble of prototype support vector machines (PSVMs) as a clas-

sification learning algorithm addressing the problem of model selection in complex datasets. The

PSVM algorithm learns a collection of linear classifiers tuned to different regions of the space in

order to separate classes with arbitrarily complicated distributions. This algorithm is based on the

exemplar SVM (ESVM) approach (Malisiewicz et al., 2011), which trains a separate linear separator

specific to each instance in the training set. The PSVM algorithm trains an initial ensemble of

ESVMs, but then iteratively improves boundaries to allow classifiers to capture groups of similar

instances. Hence these new classifiers are tuned to more generalized prototypes instead of specific

exemplars.

Although developing a cognitively plausible model is not a goal of this research, ideas from cogni-
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tive science research have influenced my work, particularly exemplar- and prototype-based theories

of concept representation (Kruschke, 2006). In particular, one could view the PSVM algorithm as

an implementation of the cognitive model called the chorus of prototypes (Edelman and Shahbazi,

2012).

In addition to the standard PSVM algorithm, I introduce a variant that uses sampling of the

training set to focus on the most difficult regions of the feature space. This modification is inspired

by a similar sampling process in AdaBoost (Schapire, 1999), which shares with PSVMs the goal of

improving accuracy in difficult datasets by combining multiple classifiers. Finally, I present empirical

evidence that PSVMs are capable of high classification accuracy in a variety of noiseless and noisy

datasets with different class distributions.

1.3 Organization

The rest of this thesis is organized as follows. Chapter 2 discusses several existing machine learning

techniques for handling difficult class distributions, with a focus on dimensionality reduction and

ensemble methods. The next chapter introduces support vector machines, as well as two ensemble-

learning algorithms that use linear SVMs as their base classifiers. Chapter 4 describes both variations

of the prototype SVM algorithm itself, while Chapter 5 details experiments comparing PSVMs with

other classification algorithms on a number of different datasets with and without noise. The final

chapter summarizes contributions and discusses future work.
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Chapter 2

Related Work

There are many ways to attack the problem of complex class distributions. One common approach

is to reduce or reformulate the feature space, since class boundaries may only seem complex when

data is viewed in a particular space. This can involve finding which features or combinations of

features are most relevant, an objective known as dimensionality reduction. Much of this work is

done in the context of unsupervised learning or exploratory data analysis, where class labels for the

training set are not provided to the learner and the explicit goal is to reveal interesting structure in

the data.

Another approach to handling complex class distributions is to leave the feature space as-is, but

learn classifiers from different subsets of examples in that space. Generally multiple such classifiers

must be used in tandem to ensure sufficient coverage of the space, so these learning algorithms for

supervised classification are known as ensemble methods. Of particular interest to us is AdaBoost,

which builds a series of models that increasingly focus on the difficult to capture regions of the

feature space.

After describing some important examples of dimensionality reduction techniques and ensemble

methods, I close this chapter with a brief discussion of other approaches to dealing with difficult

class distributions.

2.1 Dimensionality Reduction

In machine learning, many dimensionality reduction techniques fall under the category of either

feature selection or feature extraction. Feature selection seeks to choose the attributes of the data

that are most important for classification. While this is sometimes domain-specific by necessity,

there has been substantial work in feature selection algorithms, in both supervised (Guyon and

Elisseeff, 2003) and unsupervised (Ferreira and Figueiredo, 2011) learning contexts. In this section,

I discuss subspace clustering as an interesting example of the latter.

In contrast, feature extraction involves combining features to get a new feature space. Classical

techniques such as principal component analysis (PCA) and multidimensional scaling (MDS) fall

under this category, as does constructive induction (Callan and Utgoff, 1991). The feature combi-

nations can be nonlinear, as in the case of nonlinear SVMs, which I discuss in Chapter 3. Below, I

discuss manifold learning as a recent and relevant example of nonlinear feature extraction.
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2.1.1 Subspace Clustering

Subspace clustering performs feature selection in the unsupervised setting by seeking clusters of data

in potentially very different subspaces of the complete feature space. This essentially selects features

for each cluster independently. Though subspace clustering is a form of unsupervised learning, its

goals of finding patterns in different regions of highly complex datasets are similar to the goals of

my prototype SVM algorithm in the supervised learning context.

There are a number of algorithms for performing subspace clustering, which can be categorized

as either bottom-up or top-down (Parsons et al., 2004). Bottom-up approaches such as CLIQUE

(Agrawal et al., 1998) seek dimensions of the feature space with dense regions of data and use those

dimensions to build up subspaces. This idea is based on the downward closure property of density,

which states that dense regions in the full space (i.e., clusters) will also be dense when projected onto

lower-dimensional subspaces; hence the candidate dimensions can be narrowed down to those with

dense regions. In contrast, top-down approaches such as PROCLUS (Aggarwal et al., 1999) begin

with an approximation of clusters in the full space, then weight the importance of each dimension

based on evaluation of that clustering and re-cluster to iteratively refine the clustering with fewer

dimensions.

A related but not identical approach to clustering in extremely high-dimensional spaces is mul-

tiple non-redundant clusterings (Cui et al., 2010). Here the goal is to discover several distinct

clusterings, possibly in different feature subspaces, that can reveal different latent structures of the

data. This is clearly distinct from subspace clustering, where each individual cluster can appear

in a different subspace. However, it highlights the fact that class distributions and boundaries can

change depending on the space in which an algorithm examines them.

2.1.2 Manifold Learning

Subspace clustering makes the assumption that only a linear combination of features could be rele-

vant to classification, an assumption that nonlinear feature extraction can avoid. Manifold learning

assumes only that data occurs on some linear or nonlinear manifold, and its goal is specifically to

learn the manifold structure of a given set of input data.

Two important algorithms for manifold learning are Isomap and locally linear embedding (LLE),

which both exploit the fact that local regions of manifolds resemble Euclidean space. Isomap es-

timates distances within the manifold by finding shortest paths in a nearest-neighbor graph of the

training data, and then embeds the data into Euclidean space in a way that preserves the manifold’s

intrinsic geometry (Tenenbaum et al., 2000). LLE learns the geometry of the manifold by finding

locally linear fits for the training data (Roweis and Saul, 2000).

While these techniques were developed to help discover and visualize interesting structure in

high-dimensional data, they have also been extended from data exploration tasks to classification.

One way to do this is to learn a complete manifold for a set of data and then learn a classifier within

that space (Chang et al., 2003). Another way is to assume that data from different classes lie on

different manifolds, and then classify by finding the manifold to which a new data instance is closest

(Xiao et al., 2011).

Like subspace-based approaches, manifold learning must make certain assumptions about the

distribution of data in the feature space. While the assumption that data of a certain type lie in a

22



certain kind of geometric structure is mathematically elegant and useful for classifying much data,

there are no a priori reasons why this would be the case for many or even most types of datasets.

For instance, it is not clear that natural language sentences must lie on a smooth manifold structure,

or that it would be illuminating or intuitive to classify them as such. This kind of domain-specific

knowledge influences the decision to use a particular algorithm with its particular biases, which

makes a general-purpose algorithm that eliminates some of these assumptions appealing.

2.2 Ensemble Methods

Ensemble methods are of interest to us because they provide the possibility of capturing diverse

regions of the feature space with localized models. But beyond that benefit, they are the subject of

extensive research in the machine learning community as a way to build a more powerful classifier,

since an ensemble of multiple base classifiers can often outperform each individual classifier. In this

section, I discuss a number of ensemble methods, particularly AdaBoost; in the next chapter I will

discuss ensemble-based algorithms that use support vector machines, which are especially important

to this thesis.

2.2.1 General Ensemble Methods

There are two main issues to address when it comes to generating ensembles: how to train each base

classifier, and how to combine their results for the final prediction. Most algorithms combine via

some sort of weighted voting, and so the majority of past research on ensemble methods has gone

into the training phase and how to most effectively use a given base learning algorithm to capture

different aspects of the dataset. There are several methods for doing this, all of which have different

strengths in terms of dealing with noise, detecting outliers, and generally accommodating variability

(Kotsiantis, 2011).

One way to ensure diversity in a set of classifiers is to train each classifier on the same training

data but using different representation spaces. The random subspace method accomplishes this by

using different subspaces of the complete feature space (Ho, 1998). The effect of this is that each

classifier can focus on a different subset of the available attributes, which may not all be equally

important for every data instance. This also has connections to other methods of feature selection,

including subspace clustering as described in Section 2.1.1.

In contrast to the random subspace method, bagging tries to ensure a diverse set of classifiers

by representing all data in the same space, but training using different samples of the training data

(Breiman, 1996). The samples are drawn uniformly with replacement, and the size of a sample is

typically the same as the size of the training set. Bagging is particularly effective when the base

classification algorithm is unstable, meaning that small changes in the training set can result in large

variation in the resulting model. Bagging is also robust to noise, as the sampling method ensures

that noisy instances are unlikely to be over-represented in the training data for any base classifier

(Dietterich, 2000).
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2.2.2 AdaBoost

Boosting is an ensemble method similar to bagging, except that sampling of the training set is not

uniform, but biased to attempt to learn complementary classifiers. Its goal is specifically to “boost”

a weak learner 1 into a strong learner with arbitrarily high accuracy. The theory behind this method

is based in computational learning theory, particularly the probably approximately correct (PAC)

learning model (Valiant, 1984).

Perhaps the best-known boosting algorithm is AdaBoost (Schapire, 1999), which iteratively sam-

ples a subset from the training data according to some distribution of weights, trains a classifier using

that subset, and then recalculates the weights based on what examples are incorrectly categorized

by that iteration’s classifier. The resulting complete model then uses a weighted vote of the classi-

fiers in the ensemble to perform the final classifications, where votes are weighted according to the

accuracies of the individual classifiers.

AdaBoost empirically tends to perform better than bagging, especially in clean datasets, because

it increasingly focuses on training examples that could not be captured by classifiers learned on earlier

iterations. Unfortunately, this same aspect also makes AdaBoost susceptible to noise in the training

data, which can lead the algorithm astray (Dietterich, 2000). This is because mislabeled instances

are very likely to be misclassified and hence receive high priority when the training set is resampled.

Finally, note that AdaBoost, like the other ensemble methods mentioned in this section, requires

choosing a base classification algorithm. The parameters and inductive bias of the base algorithm

necessarily impact the theoretical and practical properties of the ensemble approach, even though

combining multiple classifiers still allows for a more flexible overall classifier.

2.3 Alternate Approaches

There is much other research into accommodating unusual and difficult class distributions. For

example, class imbalances arise when one class is overrepresented by the data, which can bias the

classifier towards overemphasizing that class (Kubat and Matwin, 1997). Outlier detection focuses

on finding instances that differ markedly from the rest of the data; these may need to be filtered out

as noise or examined further as important special cases (Hodge and Austin, 2004).

Other researchers have acknowledged the fact that data within a single class may be distributed

in different clusters around the feature space (Japkowicz, 2001). One way this issue has been framed,

particularly for concept learning, is in terms of small disjuncts (Holte et al., 1989). These represent

small groups of data that form a relatively minor portion of a given class, hence causing models to

either overfit or misclassify these. Note that we can view AdaBoost as learning classification rules for

small disjuncts in its later iterations, which earlier iterations of classifiers are likely to have missed;

accurately distinguishing these from noise is a significant problem for many learning algorithms in

addition to AdaBoost.

Class imbalances, outlier detection, and small disjuncts all suggest that handling difficult class

distributions well is critical to performing classification. However, all the methods in these areas are

focused on a specific type of difficult distribution; few if any acknowledge the wider array of possible

class distributions that present challenges to different models and classification algorithms.

1A weak learner is one that is guaranteed only to perform better than chance.
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Chapter 3

SVMs and Ensembles of SVMs

In this chapter, I introduce support vector machines (SVMs), which are classifier models that are

both empirically tested and theoretically sound. I also discuss exemplar SVMs, the approach on

which I base my algorithm, and profile SVMs, another ensemble-learning algorithm that learns

linear approximations of nonlinear models. Both demonstrate how an ensemble of linear SVMs can

be utilized to learn multiple high-quality linear classifiers that are tuned to local regions of the

feature space, a strategy flexible enough to be effective in a variety of class distributions.

3.1 Support Vector Machines

Support vector machines are classifier models with theoretical foundations in statistical learning

theory and well-established algorithms for learning them. They have been empirically shown to

perform well in many different types of real-world classification domains, such as the categorization

of texts (Joachims, 1998) and of fMRI volumes (Mouro-Miranda et al., 2005).

I begin by introducing the simplest task for SVMs, namely a two-class problem where the classes

are linearly separable, in which theory and intuition are most easily developed. Afterwards I move

on to the nonseparable and nonlinear cases.

3.1.1 Linear SVMs

We are given a training set containing n examples of the form (~xi, yi) where ~xi ∈ Rm is a feature

vector and yi ∈ {−1,+1} is the class label (assuming two classes). The goal of the SVM learning

algorithm is to learn the equation of a hyperplane ~w · ~x + b that separates the two classes, where

~w ∈ Rm is a vector of feature weights and b ∈ R is a bias term. When the class labels are ±1,

this corresponds to using g(~x) = sgn(~w · ~x + b) as the decision function. (Note that this and the

derivations below follow (Alpaydin, 2010) closely.)

Since there are an infinite number of separating hyperplanes for any linearly separable dataset

(see Figure 3.1), we include the additional requirement that the margin be maximized, where the

margin is defined as the distance from the hyperplane to the closest training examples. This is a

reasonable objective, because the hyperplane with the largest margin is the most generalizable linear

discriminant; in other words, if we assume instances of the same class are likely to lie close to each

other, the maximum margin hyperplane will be the one with lowest expected classification error on
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Figure 3.1: Three examples of the infinite number of hyperplanes that perfectly separate the sample
data from two classes. The third is the most generalizable and has the largest margin.

unseen data. It is also most robust to noise, which might shift instances by small amounts in any

direction.

We can encode these ideas as an optimization problem in the following way. Note that yi(~w ·~xi+
b) > 0 whenever the hyperplane classifies ~xi correctly. Furthermore, the signed distance from an

instance ~xi to the plane ~w ·~x+b is (~w ·~xi+b)/||~w|| where ||~w|| is the norm of ~w. Hence maximizing the

margin is equivalent to minimizing ||~w||. However, note that scaling ~w and b by the same constant

does not change the distance. So to determine a unique solution, we solve the following quadratic

optimization problem:

min
~w,b

1

2
||~w||2 (3.1)

subject to yi(~w · ~xi + b) ≥ 1 ∀i.

The support vectors are defined to be those ~xi that satisfy yi(~w · ~xi + b) = 1. These are the

instances that lie on the margin of the hyperplane and can be considered the most difficult instances

to classify.

If the data is not linearly separable, as is often the case, we can introduce slack variables ξi ≥ 0

for each training instance ~xi, representing how far inside the margin (or on the wrong side of the

hyperplane altogether) ~xi is. We then add the sum of these slack variables as a penalty term in the

objective function to get the following modified optimization problem:

min
~w,b

1

2
||~w||2 + C

n∑
i=1

ξi (3.2)

subject to yi(~w · ~xi + b) ≥ 1− ξi, ξi ≥ 0 ∀i.

In the nonseparable case, the support vectors also include training examples inside the margin or

on the wrong side of the hyperplane, as these are also the difficult cases to classify. The regularization

parameter, C ∈ R+, determines the relative importance of large margin versus accuracy on the

training set: the smaller C is, the more important margin is. Tuning C, and more generally the goal

of maximizing the margin, can help make SVMs robust to overfitting, especially in noisy datasets.

See Figure 3.2 for a geometric depiction of the various quantities involved.

While the optimization problems in Equations 3.1 and 3.2 can be solved as-is with existing

quadratic optimization software, the time complexity of doing so is dependent on the dimension of

the feature space, which can be extremely large. Hence we generally solve the optimization problem

using Lagrange multipliers and the dual formulation. This also greatly simplifies the process of
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Figure 3.2: A linear SVM in a non-linearly separable dataset with margins indicated with dashed
lines and support vectors in boxes. The width of the margin and values of slack variables ξ for
certain points are indicated.

learning nonlinear SVMs by enabling the use of kernel functions; see Section 3.1.2 for more details.

The Lagrangian primal corresponding to the SVM optimization problem (for separable problems;

adding slack variables is a simple modification of this) is

min
~w,b

LP =
1

2
||~w||2 +

∑
i

αi(1− yi(~w · ~xi + b)) (3.3)

subject to
∂LP
∂αi

= 0 ∀i.

The dual formulation is

max
αi

∑
i

αi −
1

2

∑
i,j

αiαjyiyj~xi · ~xj (3.4)

subject to ~w =
∑
i

αiyi~xi,
∑
i

αiyi = 0, αi ≥ 0 ∀i.

This reformulation allows us to solve the problem in time depending only on the number of

training instances. When Equation 3.4 is solved, most αi vanish; these correspond to training

instances that are far from the margin. We get αi > 0 when ~xi is on the margin, or in the

nonseparable case when ~xi is inside the margin or misclassified. Hence the weight vector ~w is

expressable just in terms of the support vectors.
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Figure 3.3: Nonlinear mappings to higher-dimensional spaces can make non-linearly separable
datasets linearly separable. Here an XOR two-class dataset is mapped from (x, y)-space to (x, y, xy)-
space, in which it can be separated by a hyperplane. This corresponds to a nonlinear function in
the lower dimensional space.

Multiclass SVMs

While SVMs are fundamentally binary classifiers, they can be extended to handle k > 2 classes in a

number of different ways. The two most common methods are one-against-all and one-against-one.

In one-against-all, we train k SVMs, each with one class as the positive class and all others treated as

a single negative class. Since multiple classifiers may classify a given instance positively, the decision

function chooses the class for which ~w · ~x + b is maximum. In one-against-one, we train
(
k
2

)
SVMs

that separate all pairs of classes. Each classifier then votes for a class, and the class with the most

votes is the predicted class.

Note that my PSVM algorithm uses the one-against-one approach as implemented in LIBSVM

(Chang and Lin, 2011). Chang and Lin base this choice on the results in (Hsu and Lin, 2002),

which show that, especially in the case of linear kernels, one-against-one has significantly better

performance than one-against-all or other more complicated methods. For descriptions and analyses

of other multiclass SVM approaches, see for instance (Duan and Keerthi, 2005).

3.1.2 Nonlinear SVMs

SVM learning algorithms can be extended to learn nonlinear classifiers through the use of basis

functions, which map instances from the input feature space to another space, possibly of much

higher dimension. When these mappings are nonlinear, learning a linear discriminant in the new

space corresponds to learning a nonlinear discriminant in the original space. See Figure 3.3 for an

example of this. Using a basis function φ(~x), the objective function in Equation 3.4 becomes

max
αi

∑
i

αi −
1

2

∑
i,j

αiαjyiyjφ(~xi) · φ(~xj). (3.5)

Explicitly computing these mappings and the dot product in Equation 3.5 can be computationally

expensive, especially since the target space might have extremely high dimension. Kernel functions

allow us to perform these mappings implicitly, reducing the computational overhead and giving us
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Figure 3.4: The idea behind the ESVM algorithm is to learn a separate SVM for each instance in
the training set, so that each classifier can be specifically tuned to the visual characteristics of its
exemplar without being overly general. For example, motorcycles viewed from the side and from
the back visually have nothing in common, but an individual classifier can be trained to recognize a
side-view or back-view image of a motorcycle very well, and an ensemble of such classifiers can then
recognize motorcycles in general. Figure content from (Malisiewicz et al., 2011).

the power to map into infinite-dimensional spaces. In this case, the objective function becomes

max
αi

∑
i

αi −
1

2

∑
i,j

αiαjyiyjK(~xi, ~xj). (3.6)

Different choices of kernel functions result in classifiers of varying flexibility and power. Two

popular kernel types are polynomials, or K(~xi, ~xj) = (~xi · ~xj + 1)d for some degree d; and radial

basis functions: K(~xi, ~xj) = exp
[
− ||~xi−~xj ||2

2s2

]
for some radius s.

Note that the choice of kernel function is effectively a parameter for the SVM learning algorithm,

and a major one at that; choosing a particular kernel restricts the hypothesis space of the algorithm

to a certain class of functions, and choosing improperly for a given dataset may result in over- or

underfitting.

3.2 Exemplar SVMs

My approach to dealing with difficult class distributions is based on the notion of exemplar SVMs

(ESVMs) developed for object recognition (Malisiewicz et al., 2011). In object recognition, the goal

is to classify images based on what objects they contain. The ESVM algorithm trains a separate

SVM for each exemplar image from the training set, with that exemplar as the sole positive instance

and many instances of the other classes as negative instances (see Figure 3.4 for an example). If

one of these exemplar SVMs positively classifies a novel instance, then this suggests that the novel

instance shares the class label of (i.e., depicts the same object as) that model’s exemplar. Thus an

ensemble of ESVMs can be used to classify new data instances, either through voting or a more

complicated procedure.

Object recognition is a well-studied classification problem that exemplifies the kind of complex

class distributions I am seeking to handle in a general way. In particular, the ESVM algorithm is

an appealing starting point for this work, as it leverages the power of both SVMs and ensembles to

accommodate this complexity.
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Figure 3.5: Examples of visual synonymy (left) and polysemy (right). In the former, images are
visually similar but present objects belonging to different semantic categories; in the latter, images
are of the same object but are visually very different. Image taken from (Malisiewicz and Efros,
2008).

3.2.1 Motivation

The ESVM framework is especially suitable for object recognition for a number of reasons. In this

domain, discriminative techniques have seen much success thanks to their ability to effectively handle

massive quantities of negative instances by representing them implicitly in the decision boundary

rather than storing them explicitly. A powerful discriminative classifier, such as an SVM, permits

a greater degree of generalization than nearest-neighbor and other instance-based machine learning

algorithms.

However, without the benefit of explicit association provided by nearest-neighbor approaches,

these discriminative methods do not directly address the trickiest problems in object recognition,

including visual synonymy and polysemy (see Figure 3.5). Visual synonyms are objects that look

similar but have different class labels; these are data instances that might lie close together in the

feature space but ought to be classified differently. Visual polysemes are objects that look different

but have the same class label, corresponding to instances that are distant in feature space but must

be classified identically. A classifier that learns a single decision boundary will not necessarily be

able to handle these cases correctly.

Explicit association also permits the transfer of meta-data, such as information on image segmen-

tation or object geometry, from the exemplar to a newly classified instance. Thus ESVMs combine

the best aspects of discriminative and instance-based algorithms, resulting in an object recognition

framework that can go beyond mere image retrieval.

These strengths of ESVMs also make them potentially useful in other domains with complex class

distributions. An approach based on ensembles and exemplars provides comprehensive coverage of

the feature space, which is critical for classes whose instances could potentially lie in a number of

diverse regions of the space. The existence of at least one exemplar in each of these regions can

allow the ensemble as a whole to recognize their presence, without the need to create a single overly

general classifier to accommodate them.

3.2.2 Algorithm Description

As applied to object recognition, the ESVM algorithm works as follows. Each ESVM is trained

after mining a subset of hard negatives from the set of all images that do not contain instances

of the exemplar’s category. This step can be accomplished via a bootstrapping algorithm, which

trains an initial model with an arbitrary negative set and then iteratively retrains models using the
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negatives that were incorrectly classified by the previous model (Felzenszwalb et al., 2010). Hard

negative mining is used because the potential negatives far outnumber the single positive exemplar

of a particular model; hence a subset of the negatives must be chosen to avoid class imbalances, and

it is important to choose negatives that are likely to become support vectors.

The outputs of the independently-trained ESVMs must then be tuned or calibrated to make

them compatible. This accounts for the fact that each model may report a potentially large number

of false positives, since many images may be visually similar without actually containing the same

object. The calibration is essentially equivalent to shifting the decision boundary of each SVM based

on performance on a validation set. More generalizable models are boosted by having their decision

boundaries shifted further from the exemplar, while the decision boundaries of poorly generalizable

models are shifted closer to the exemplar.

Exemplar SVMs have achieved notable success in the realm of computer vision, but applications

to other domains have been limited. Hajishirzi et al. use ESVMs as a component of an algorithm to

learn alignments between sentences and the events they describe (Hajishirzi et al., 2012). A natural

language setting such as this is an intriguing choice, as linear SVMs in general are well suited to

text classification tasks (Joachims, 1998). However, to the best of my knowledge, there have been no

other applications of the ESVM algorithm outside of vision. Hence one of the goals of this thesis has

been to start with this algorithm, which handles the difficult class distributions in visual domains

very well, remove its vision-specific elements, and adapt it to perform well in any complex dataset.

3.3 Localized and Profile SVMs

Another pair of classification algorithms that use an ensemble of linear SVMs are localized and

profile SVMs (Cheng et al., 2010). Here the idea is again to combine SVMs with instance-based

methods, specifically the k-nearest neighbor classifier, in order to learn local models of the example

space. The localized SVM algorithm trains a new SVM model for each test instance, where the

influence of each training instance ~xi is weighted according to its similarity to the test instance xj .

This similarity is represented by a function σ(~xi, xj) taking on real values between 0 and 1.

As expected, the localized SVM algorithm is very slow at test time. Profile SVMs improve this

running time by learning a local SVM for each of k clusters of data, so that test instances can be

classified by finding the most similar cluster and using that cluster’s SVM. If k is much smaller than

the number of test instances, then many fewer SVM models must be learned. However, this means

that before learning the SVMs, the algorithm must perform a variation of k-means clustering on

both training and (unlabeled) test data, called MagKmeans.

There are two main differences between MagKmeans and standard k-means. First, besides

grouping together similar data, an additional objective is to balance the class distribution of training

data within a single cluster, since the ultimate goal is to learn a local SVM model for each cluster.

Second, while k-means clusters the training instances themselves, MagKmeans clusters similarity

vectors ~σi corresponding to training instances ~xi, where each component is equal to σ(~xi, xj) for

a test instance xj . Thus the training examples in a single cluster have correlated similarities to

every test instance. Note that forming these similarity vectors does not use information about test

instances’ actual class labels, but it does assume that all test examples are available at once.

While the profile SVM algorithm performs very well, at least in the two-class cases reported in
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(Cheng et al., 2010), and also improves in speed over localized SVMs, it still postpones all clustering

and training of models until test time, unlike prototype SVMs. It also requires that the number of

clusters be chosen ahead of time, which is exactly the kind of assumption we would rather not make;

prototype SVMs, as I discuss in Chapter 4, are able to discover clusters of similar data on their own

without knowing ahead of time how many there are. Despite these drawbacks and differences, profile

SVMs are indicative of the fruitfulness of an approach that learns local linear models for complex

class boundaries.
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Chapter 4

The Prototype SVM Algorithm

This chapter describes how to train an ensemble of prototype support vector machines (PSVMs).

The algorithm begins by training an ensemble of exemplar support vector machines (ESVMs). It

then iteratively improves and generalizes the boundaries of the SVMs to achieve the final ensemble

of PSVMs. I will also present a variation of this algorithm, in which an AdaBoost-like procedure

repeatedly weights and samples the training data to focus on difficult-to-capture regions of the

feature space. Such an addition can be particularly helpful in datasets with unusually difficult class

distributions.

4.1 Prototype SVMs

There are three major components of the main PSVM algorithm: initialization, shifting of bound-

aries, and prediction. Algorithm 1 describes the high-level training of PSVMs, showing how these

three components are used.

4.1.1 Initialization

The algorithm first trains an ensemble of ESVMs, with one model for each instance in the training

set. This requires that the algorithm create a training set of positive and negative examples specific

to each ESVM. Initializing positive sets is straightforward, as each set is a single example that serves

as the exemplar for the ESVM.

In theory, negative sets could contain every instance of a different class from the exemplar.

However, this is problematic for several reasons, as depicted in Figure 4.1. The first is that training

any classifier in the presence of class imbalances can cause underrepresented classes to be ignored in

favor of high classification accuracy; this problem is exacerbated when one class is represented by a

single instance, as the exemplar framework dictates. The second reason is that in spaces with highly

variable class distributions, distant regions of the space may have no influence in how local regions

should be partitioned, so negatives far from the exemplar might be useless or even detrimental for

learning good classifiers. Finally, in general, classes will not be linearly separable, so in order to learn

relatively high-quality linear discriminants, the algorithm should choose a sample of the potential

negatives that is linearly separable from the exemplar.
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Train(T )

Input: set of labeled training data, T
Parameters: number of iterations, s, and fraction of data to hold out for validation, v
1: Split data into training and validation sets, D and V .
2: P ← [[di] for di ∈ D] # List of positive sets, each initially just the exemplar.
3: N ← [ChooseNegatives(D, di) for di ∈ D] # List of negative sets.
4: for j = 0, . . . , s do
5: Ej ← [ ] # The ensemble being trained on this iteration.
6: for Pi ∈ P and Ni ∈ N do
7: Train a linear SVM, using Pi and Ni.
8: Add this SVM to Ej .
9: aj ← Test(V,Ej) # Accuracy of Ej on V .

10: P,N ← Shift(D,Ej , P,N)
11: return ensemble Ej with highest accuracy on V

Algorithm 1: Train an ensemble of PSVMs.

Figure 4.1: Problematic choices for ini-
tial negatives. The boxed instance is the
exemplar and the instance in a solid cir-
cle is the closest negative. The instances
in dashed circles are poor choices of neg-
atives, either for being too far away and
thus not relevant to local class distribu-
tion, or for being in a different direction
from the closest negative and thus not
linearly separable.

Figure 4.2: How negatives are initialized
for the boxed exemplar. The vector to
the closest negative as well as the hyper-
plane normal to it (and containing the
exemplar) are shown. Here k is set to
three, so the three closest negatives in
the correct direction have been selected.
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ChooseNegatives(D, di)

Input: set of training data, D, and training instance, di
Parameters: number of negatives to return, k
1: Ni ← [ ]
2: Di ← all instances in D of a different class label from di
3: Compute Euclidean distance from di to each element of Di.
4: Sort Di in ascending order by distance.
5: x← closest negative in Di

6: ~n← (x− di)/||x− di|| # Normal vector to the hyperplane passing through di.
7: for dj ∈ Di do
8: if ~n · (dj − di) > 0 then
9: Add dj to Ni

10: if |Ni| = k then
11: return Ni
12: return Ni

Algorithm 2: Initialize set of negatives for a given data instance.

To accommodate these issues, the algorithm chooses negatives in the manner described in Al-

gorithm 2 and depicted in Figure 4.2. The algorithm first finds the negative closest in Euclidean

distance to the exemplar. This defines a hyperplane passing through the exemplar and normal to

the vector between the exemplar and that negative. The candidate negatives are then those that

lie on the positive side of this hyperplane (i.e., the same side of the hyperplane as the closest neg-

ative). Note that no margin is enforced, and the hyperplane being considered is only a very rough

approximation of the hyperplane that will be learned by the SVM algorithm.

From those candidate negatives, the algorithm chooses only a small number of negatives. This

number can be user-selected, although empirically about seven negatives seems to work reasonably

well for training the SVMs. This is not surprising; the discriminant that the SVM algorithm learns

is expressed in terms of support vectors, which are the examples that lie closest to the margin, so in

general omitting examples distant from the hyperplane does not affect which hyperplane is learned.

Finally, this small subset is chosen from the potential negatives closest to the exemplar, so that

the training set for each model is kept mostly localized and the training process is not “distracted”

by instances in distant regions of the feature space.

Once a negative set for each exemplar has been initialized, the algorithm trains an SVM for each

exemplar, as in the ESVM algorithm.

4.1.2 Shifting

After the algorithm has trained the initial ensemble of ESVMs, the boundaries are shifted ac-

cording to Algorithm 3. Shifting accomplishes three main goals:

1. It generalizes classifiers from a single exemplar to a cluster of nearby instances.

2. It adjusts boundaries that misclassified negative instances.

3. It removes useless classifiers from the ensemble altogether.

These tasks are depicted in Figure 4.3.
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To the left is the initial ensemble of ESVMs.
For clarity, only the models whose exemplars
are triangles are shown, and the numbers in-
dicate which exemplars correspond to which
models.

Here the boxed exemplar’s model is gener-
alized to include the circled instance. The
new instance becomes a support vector for
the new model, which essentially coincides
with a pre-existing SVM. We expect this to
happen because these two instances are sim-
ilar.

This image depicts boundary adjustment,
where the boxed exemplar’s model is shifted
to account for the fact that it misclassified
the circled instance.

Finally, since the boxed exemplar’s model
fails to capture any data, it is dropped from
the ensemble. This model was poorly placed
because the exemplar was so close to its neg-
atives that the SVM algorithm opted to clas-
sify the exemplar as a negative (i.e., a noise
instance) and optimize margin width instead.

Figure 4.3: How the various pieces of the shifting method take place. Note that the final ensemble
already does a better job at capturing the important structure of the class distribution, namely the
cluster of triangle instances.
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Shift(D,E, P,N)

Input: set of training data, D; ensemble of models, E;
positive and negative sets for each model, P and N

Parameters: probability to add to negative set, p
1: C ← [[ ] for dj ∈ D] # List of candidate models for each dj.
2: for mi ∈ E and dj ∈ D do
3: if mi classifies dj positively then
4: if class(dj) = class(mi) then # dj is correctly classified.
5: Compute the distance of dj to mi’s exemplar.
6: Add mi and its distance to the list of candidates Cj .
7: else # dj is misclassified, i.e. a hard negative.
8: Add dj to mi’s negative set Ni with some probability p.
9: for dj ∈ D do

10: Add dj to the positive set Pk, where mk is the closest model in Cj .
11: for mi ∈ E do
12: if mi did not classify anything positively then
13: Remove mi from the ensemble, by removing Pi from P and Ni from N .
14: return P,N

Algorithm 3: Generalize, adjust, and drop models from the ensemble.

Generalization is at the core of what turns exemplar SVMs into prototype SVMs. Although

training a classifier for each instance is effective for ensuring complete coverage of the feature space,

in actuality many instances will co-occur in clusters, and a classifier that acknowledges this will more

effectively capture the true class distribution.

The algorithm generalizes by adding new instances to the positive sets of models. For a given

instance, a candidate model is one that classifies the instance positively and whose exemplar is of

the same class as the new instance. These candidate models are ones that could be improved by

adding this instance to their positive sets.

But it could be problematic to add each instance to all of its candidate models. Because linear

classifiers simply divide the space into half-spaces, they run a serious risk of overgeneralizing by

adding too many positives that may have nothing to do with the original exemplar and its cluster.

This is the problem of failing to keep classifiers local that we encountered in Section 4.1.1 as well. To

avoid this, if a particular instance is positively classified by multiple models, the algorithm only adds

it to the positive set of the model with the closest exemplar. As in the initialization of negatives,

this helps keeps each model tuned to a local region rather than attempting to capture wide swaths

of the feature space.

The algorithm also improves the models by adding misclassified negative instances to their neg-

ative sets. This performs a kind of hard negative mining. If we discover that a model classifies an

instance as a positive example when it should be a negative, we need to shift the linear separator

to exclude the negative example. To do this, we consider adding the negative instance explicitly to

the negative set for that model.

However, again since we are dealing with complicated class distributions and we want to keep

models localized, some negatives actually should be classified incorrectly by individual models, and

there is no principled way of identifying these in every possible dataset. Hence we only add to the

negative set with some probability, as set by the user. This has the additional benefit of adding
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Test(D,E)

Input: set of testing data, D, and ensemble of models, E
1: for mi ∈ E and dj ∈ D do
2: if mi classifies dj positively then
3: Record weighted vote for mi’s class.
4: for dj ∈ D do
5: Output class with max votes as prediction for dj .
6: a← classification accuracy over all data in D.
7: return a

Algorithm 4: Predict class labels for test data and compute overall accuracy.

randomness and hence robustness to the algorithm. See Figure 4.4 for an illustration of these issues.

The final step in the shifting algorithm is to remove models that do not classify any instances

positively. Depending on what regularization parameter is chosen for the SVM learning algorithm,

an SVM trained on unbalanced data can simply classify everything into the majority class. Such

a classifier does not recognize anything as being in its positive class and thus is not useful for the

overall ensemble. Fortunately, the use of an ensemble provides redundancy; since the algorithm

learns a classifier for each instance of the training data, some models can be dropped from the

ensemble without detriment, unless the class distribution is extremely difficult.

Dropping models is also a key reason why the ensemble of PSVMs is robust to noise. When the

exemplar of an ESVM is a noisy instance, the SVM training algorithm has difficulty separating it

with a reasonable margin, and thus is often inclined to classify the exemplar negatively and optimize

the width of the margin instead. Such a model then classifies nothing as a positive instance and is

dropped from the ensemble during shifting. Hence the SVM’s proper handling of noise helps the

ensemble of PSVMs do the same.

The shifting procedure occurs some number of times as specified by the user. After each shift, the

algorithm trains a new ensemble with the new positive and negative sets, then tests this ensemble

on a held-out validation set in the manner described in Section 4.1.3. The ensemble with the highest

classification accuracy on the validation set is retained. Empirically, I found that a reasonable

number of iterations was between 10 and 20, as by this time the accuracy generally has stabilized.

4.1.3 Prediction

Finally, Algorithm 4 describes how the ensemble of PSVMs predicts class labels for novel instances,

both for validation after each shift and at test time. For each new instance, if a model classifies it

positively, this corresponds to a “vote” for that model’s positive class (i.e., the class of its original

exemplar). I also generate the probability that the instance should be assigned the model’s positive

class, as is detailed in (Chang and Lin, 2011), and sum these probability values rather than the

raw votes. This allows models to make weighted votes based on their confidence levels. Then the

predicted class label assigned by the entire ensemble is simply the class with the maximum sum of

these weighted votes.
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Figure 4.4: Some tricky cases to consider for the shifting algorithm. Note that the data occurs in
alternating stripes, as is depicted in the above image, so classifiers that approximate the vertical
boundaries can be considered “good models”.

Below is the model shown for the boxed exemplar, whose negative set is circled in solid lines. The
triangles with dashed circles are negatives that have been misclassified by the model, or what we call
hard negatives. One would help lead to a vertical line while the other would be a distraction, but
there is no a priori way to distinguish between them that could not be foiled by another dataset.
Hence the algorithm randomly decides which negatives to include.

The dot with a dashed circle is a positive that could be added to the positive set, but does not
provide information about the exemplar’s local region and could hinder the process of discovering
the vertical line. It is worth noting that in contrast to the negative sets, in the case of positives we
do have a principled way of determining relevance for a given model, namely proximity, since the one
thing we require from PSVMs is that they capture a local generalization of their initial exemplar.
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TrainWithSampling(D)

Input: set of labeled training data, D
Parameters: number of iterations, r; fraction of data to sample initially, f ;

fraction of data to sample subsequently, f ′

1: Initialize all weights to 1/n. # n is the size of D.
2: S ← Sample(D, f)
3: for r iterations do
4: E ← Train(S)
5: a← Test(D,E) # Accuracy of the ensemble.
6: Reweight(D)
7: S ← S ∪ Sample(D, f ′)
8: return E

Algorithm 5: Train a sequence of ensembles of PSVMs using sampling and reweighting.

4.2 PSVMs with Weighted Sampling

Although the algorithm described in the previous sections can handle a variety of complex data

distributions, there are at least two reasons why we might want to modify it. Figure 4.5 shows

a simple example in which this is the case. First, there is computational overhead in training a

separate SVM for every instance in the training set, especially if the class distribution is not in fact

particularly complicated. Hence training an ensemble using just a sample of the training data can

provide increased efficiency without necessarily decreasing classification accuracy.

Second, iteratively reweighting and resampling the training set, as AdaBoost does, can help

capture difficult regions of the feature space that the PSVM algorithm as presented in Section 4.1

might overlook. The SVM algorithm, particularly with a fairly large regularization parameter, is

a powerful discriminative classifier in part due to its robustness to noise. Yet this can backfire in

datasets where classes in the feature space truly are fragmented in small groups, which the SVM

algorithm might mistake as noise. Effectively, AdaBoost’s oversensitivity to noise (Dietterich, 2000)

paired with SVM’s robustness to noise is capable of modeling truly complex datasets as accurately

as possible.

To imitate AdaBoost’s ability to focus on hard-to-capture regions of data through reweighting,

I implemented a similar sampling and reweighting scheme as a wrapper around the previously de-

scribed PSVM algorithm; this wrapper method is Algorithm 5. As in AdaBoost, the algorithm

repeatedly samples from the training data according to a distribution of weights, trains a classifier

(which in this case is an ensemble of classifiers), and then reweights the data based on the perfor-

mance of that classifier on the training set, where the misclassified instances are more likely to be

chosen on the next iteration.

However, there are some notable differences between this method of resampling and AdaBoost.

Rather than generate a new classifier using a new sample of data on each iteration and add it to

a growing ensemble, the algorithm takes the union of the current data sample and the new sample

and retrains the entire ensemble of classifiers from scratch. This is because we already have a

principled way of creating the ensemble, using the exemplar approach, and to use boosting to create

an ensemble of ensembles would be overkill.

Furthermore, since the algorithm unions the new and old samples on each iteration, there is no

need to have positive weight for correctly classified instances, since those are likely to have come
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This dataset is mostly linearly separa-
ble, so learning a separate ESVM for
every instance is overkill, but some care
must be taken to include the small clus-
ter in the bottom right.

On the right is the initial sample of
data (shown darkened), as well as the fi-
nal ensemble trained using this sample,
where three of the initial ESVMs have
been dropped and the others shifted.
Note that the small cluster was not rep-
resented in the sample and hence has not
been captured.

On the left is the next iteration, with the
sample shown darkened. This new fi-
nal ensemble captures the class distribu-
tion without the performance overhead
of training many unnecessary SVMs.

Figure 4.5: An example of how weighted sampling can help in certain types of datasets.
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Reweight(D)

Input: set of training data, D
1: for di ∈ D do
2: if di was correctly classified then
3: weight(di) = 0
4: else
5: weight(di) = 1/z # z is the number of misclassified instances.

Algorithm 6: Adjust weights of data instances for sampling.

from the old sample and hence will still be included. Thus the weights of these instances are set to

zero rather than simply decreased as in AdaBoost. The weights of incorrectly classified instances

are then renormalized so that they sum to one. More complicated weighting schemes are certainly

possible; for example, the weights could be adjusted in the same way as in AdaBoost (Schapire,

1999). Algorithm 6 details the reweighting procedure.

Adding this level of iteration clearly increases the complexity of the algorithm, both in the sense

of intellectual complexity for the programmer and computational complexity. But in practice, I find

that more than two or three iterations of sampling are rarely necessary. In fact, as we will see in

Chapter 5, AdaBoost rarely improves linear SVMs significantly, possibly due to the fewer degrees of

freedom in a linear classifier versus a nonlinear one.

In this version, the number of times that resampling occurs, as well as the percentage of the

training set that is sampled or resampled on each iteration, are user-defined parameters for the

algorithm. When the entire training set is used and no resampling occurs, this corresponds to the

normal version of PSVMs as described in Section 4.1. While ability to sample from different parts of

the space can improve the performance of PSVMs, this is not necessarily the case. Also note that in

general there is a tradeoff in efficiency between sample size and number of iterations. The resampled

version with small sample sizes and a small number of iterations could also be more flexible as well

as relatively efficient.

4.3 Analysis

The final goal for this chapter is to determine the asymptotic running time of the PSVM algorithm.

I will also describe some practical caveats and factors to consider in addition to the worst-case

computational complexity.

The core of the training algorithm (Train, Algorithm 1) is, of course, training one linear SVM for

each data instance. If there are n training instances, then training a linear SVM is O(n2), making

the total running time O(n3). Note that there are algorithms for speeding up or approximating

the SVM learning process, such as (Joachims, 2006) and (Franc and Sonnenburg, 2008), that can

reduce this running time substantially. Also note that this is a very conservative upper bound in

this particular context, as I will discuss later in this section.

Aside from training the SVMs, the running time of training the ensemble of PSVMs depends

on the running time of ChooseNegatives, Test, and Shift. (Note that I assume the iteration

constants s in Algorithm 1 and r in Algorithm 5 are small relative to both the amount of data and

dimension of the feature space.)

42



Three main tasks happen for each data instance in ChooseNegatives (Algorithm 2). First

Euclidean distances are computed to O(n) negatives; each distance computation is O(m) where m

is the dimension of the feature space, so in total this takes O(nm) time. Then the negatives are

sorted, which is O(n log n). Finally the directions of the negatives are checked relative to the closest

negative to the exemplar, which is O(nm) due to the dot product. So overall, ChooseNegatives is

O(nm+n log n)), which means that choosing negative sets for all of the instances is O(n2m+n2 log n).

For Shift (Algorithm 3), the most time-intensive section is the loop in lines 2–8, during which

each training instance is classified by each model in the ensemble, and the distance between instances

is computed (in the worst case) every time. For SVMs with a linear kernel, a single classification

requires taking a single dot product, so these operations are both O(m). Hence Shift is an O(n2m)

algorithm.

Predicting a class label for a single new instance requires classifying it using each of O(n) linear

SVMs, which, as described above, takes O(m) time. So Test (Algorithm 4) is O(nm) for a single

novel example.

Finally, note that adding weighted sampling to the PSVM algorithm does not increase asymptotic

runtime, as the operations in Algorithm 5 other than Train, like computing the weight distribution

and drawing samples, are linear operations. Therefore, for both versions, the overall asymptotic

running time to train an ensemble of PSVMs with n training instances and m features is O(n3 +

n2m+ n2 log n).

However, note that in practice the running time will virtually always be much lower than this.

There are three key assumptions we make for worst-case running time analysis that are unrealistic,

though impossible to make theoretical guarantees about without detailed knowledge of precise data

distributions.

1. All the training data is used in each of the above methods.

2. In particular, all the training data is used to train each SVM.

3. All the models are retained throughout all the iterations of the algorithm.

Item 1 will certainly never be true in the version of PSVMs with weighted sampling, since a

sample of the complete dataset is passed to the Train method. Furthermore, in line 1 of Train

the data is split into training and validation sets, and all further methods (besides Test in line 9)

are called with just the former. For each of these cases, it is likely that relatively high proportions

of the data will be used for training, so assuming a value of n is reasonable for asymptotic runtime.

We assume item 2 when we claim that training a linear SVM takes O(n2) time, and certainly

bizarre datasets are conceivable in which all the data given to Train will be used in the positive

and negative sets of all SVMs. However, remember from Section 4.1.1 that initial sets are seeded

with a single positive exemplar on the one hand and a small number (e.g. seven) negatives on the

other; furthermore, positives are added only with the distance restriction as described in Section

4.1.2, while negatives are only added with some small probability (e.g. 0.5%). Thus the sets of data

each model is trained on are generally only small subsets of the full dataset.

Item 3 is also conceivably true in some outlying cases. But in reality, the urge of the SVM

algorithm to maintain large margins, and the use of relatively small (initially singleton) positive

sets, implies that many SVMs classify nothing positively and are dropped from the ensemble during
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the first few iterations. More details on empirically how many models are retained in the final

ensemble will be described in Chapter 5. Also note that this behavior collaborates nicely with the

growth of positive and negative sets in item 2 to keep running times low: in early iterations, there

are many models but small sets, while later on there tend to be fewer models with larger sets.
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Chapter 5

Experiments

This chapter describes experimental results comparing the PSVM algorithm against a number of

different classification learning algorithms on a variety of datasets. I begin by describing the setup

of the experiments and the nature of the datasets and algorithms used. Then I present and discuss

my results on both noiseless and noisy data. Overall, the PSVM algorithm performs better than

the other algorithms I tested in datasets with the most complicated class distributions, and the

performance of the standard PSVM algorithm is not significantly worse than other algorithms when

applied to simpler data distributions. PSVMs with weighted sampling also perform very well in

complicated datasets but tend to perform worse on simpler datasets as compared to other algorithms.

5.1 Experimental Setup

5.1.1 Methodology

I tested both the basic PSVM algorithm and the version with weighted sampling against the following

algorithms.

• C4.5: a decision tree learning algorithm, which recursively splits the data based on the attribute

that maximizes information gain with respect to the classes (Quinlan, 1993).

• AdaBoost with C4.5 as the base classifier: see Chapter 2 for a description of AdaBoost.

• SVMs with a linear kernel: see Chapter 3 for a description of SVMs.

• AdaBoost with linear SVMs as the base classifier.

• SVMs with a polynomial (quadratic) kernel.

• Multilayer perceptrons: a neural network classifier, with sigmoid units trained using backprop-

agation (Rumelhart et al., 1986).

These are all commonly used classifier learning algorithms that perform well on average, but

generally have different strengths. C4.5 is a standard algorithm that researchers frequently use for

comparisons; it performs particularly well in combination with AdaBoost. Linear SVMs are the

state-of-the-art algorithm for learning linear separators. AdaBoosted linear SVMs are a reasonably
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Dataset Instances Features (type) Classes (instances per class)

Synthetic isolated 800 2 (real) 2 (500 / 300)

striated 800 2 (real) 2 (400 / 400)

spirals 194 2 (real) 2 (97 / 97)

Benchmark iris 150 4 (real) 3 (50 / 50 / 50)

glass 214 9 (real) 6 (70 / 76 / 17 / 13 / 9 / 29)

vehicle 846 18 (integer) 4 (212 / 217 / 218 / 199)

segment 2310 19 (real) 7 (330 each)

Real-world twitter 600 2715 (integer) 4 (99 / 157 / 30 / 314)

Table 5.1: The datasets used in the experiments. The top three are synthetic, with the first two
created by myself and the spirals dataset taken from CMU’s Neural Networks Benchmarks (White
et al., 1995). The next four are benchmark datasets from UCI’s Machine Learning Repository (Bache
and Lichman, 2013). The Twitter dataset is from SemEval (Wilson et al., 2013).

close approximation to PSVMs, as both algorithms learn ensembles of linear SVMs that capture

different parts of the example space. Polynomial SVMs are common “off the shelf” classifiers, so

performance comparable to theirs is indicative of strong performance in a variety of types of data.

Finally, multilayer perceptrons are flexible classifiers able to represent arbitrary boolean-valued or

continuous functions, given sufficient training data and an appropriate number of hidden nodes.

This is a goal close to that of PSVMs, so again comparable performance would suggest PSVMs are

achieving that goal.

For each algorithm, I used the implementations provided by Weka (Hall et al., 2009), an open-

source library of data mining algorithms. In particular, I used Weka’s wrapper of LIBSVM (Chang

and Lin, 2011) for the SVM experiments, as I also used LIBSVM for the PSVM algorithm. LIBSVM

is a fast and easy-to-use library for support vector classification and regression.

I also used the default parameters provided by Weka for all the algorithms, except I reduced

the training time of multilayer perceptrons from 500 to 200 for reasons of time. For PSVMs I used

the following default parameters: v = 25% (percent of data used for validation), s = 10 (iterations

of shifting), k = 7 (number of initial negatives), and p = 0.5% (hard negative mining probability);

see Chapter 4 for details on how these parameters are used. In the sampled version, I started with

f = 50% of the data and resampled f ′ = 25%, for a total of two samplings. Note that for all the

algorithms, these parameters were intentionally chosen to be reasonable but not optimal. Hence

these can be considered pessimistic estimates of accuracy, since in practice, parameters would be

optimized for the data.

5.1.2 Datasets

There are three general kinds of datasets on which I tested my algorithm; these are listed in Table

5.1. First are synthetic datasets, specifically designed to have unusual class distributions to provide

a proof of concept of the power of PSVMs. Figure 5.1 shows what these datasets look like; by being

two-dimensional, they also allow easier visualization of both the data itself and the algorithm’s

behavior. The spirals dataset is a standard benchmark for neural networks originally from CMU
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Figure 5.1: Images of the three synthetic two-dimensional datasets on which I ran experiments:
isolated, striated, and spirals.

(White et al., 1995); the others I generated myself. In isolated, each cluster is normally distributed

and the background data is uniform outside three standard deviations of each cluster’s mean. In

striated, each stripe is normally distributed with greater standard deviation in one direction.

Next are benchmark datasets from UCI’s Machine Learning Repository (Bache and Lichman,

2013). These allow for comparisons with other algorithms in the literature. I selected these datasets

without regard to the results of the current study, and they were the only such datasets used.

The last dataset is a natural language classification task from the Semantic Evaluation (SemEval)

workshop (Wilson et al., 2013). The data consists of raw Twitter messages, or tweets, and the task

is to classify them according to their sentiment as objective (i.e., no sentiment), positive, neutral,

or negative. I included this dataset as an example of a challenging real-world domain.

For the benchmark datasets, I used the features provided in those sets. The Twitter dataset

contained only raw tweets and sentiment labels, and hence I preprocessed and featurized that dataset.

Much research has gone into good feature representations for natural language texts and tweets in

particular, but as the focus of this work is not sentiment analysis, I used a basic but reasonable set

of features for this data; my feature set included single words, links, usernames, hashtags, standard

emoticons, and words from the MPQA Subjectivity Lexicon (Wilson et al., 2005). For more details

on sentiment analysis in Twitter, see for instance (Barbosa and Feng, 2010) or (Davidov et al., 2010).

5.2 Results and Discussion

For each algorithm, I report the results of ten-fold cross validation on each dataset. I applied the

10-fold cross-validated t-test to construct a 95% confidence interval for the difference in accuracy

rates of the algorithms. Table 5.2 compares standard PSVMs with the other algorithms, and Table

5.3 does the same for PSVMs with weighted sampling. Also see Table 5.4 for counts of wins, losses,

and ties over the other algorithms.

Overall, the PSVM algorithm performs about as well as the other algorithms in all datasets,

and has significantly higher accuracy in the datasets with the most difficult class distributions. Its

performance is especially impressive in the tricky synthetic datasets. This is no surprise; while

those datasets were not designed specifically for this algorithm, they were designed to exemplify

particularly difficult class distributions. Although PSVMs do not perform as impressively in the

other domains, in general they do not perform significantly worse than the other algorithms. The

exceptions are glass and segment; I hypothesize that this is because these are the datasets with the

largest number of classes, and the extension of SVMs to multiclass domains is not as natural as it
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Dataset
PSVM
without
Sampling

C4.5
Boosted
C4.5

Linear SVM
Boosted

Linear SVM
Polynomial

SVM
Multilayer
Perceptron

isolated 90.9± 4.07 98.1±1.79 • 98.5±1.46 • 62.5± 0.0 ◦ 62.5± 0.0 ◦ 81.9±4.38 ◦ 80.6±2.81 ◦

striated 97.3± 1.66 69.4±13.4 ◦ 90.1±7.38 ◦ 48.5±3.94 ◦ 53.4±16.3 ◦ 72.8±4.18 ◦ 75.0±25.0 ◦

spirals 21.8± 18.9 0.0± 0.0 ◦ 0.0± 0.0 ◦ 0.0± 0.0 ◦ 5.63±8.97 ◦ 0.0± 0.0 ◦ 20.6± 28.9

iris 96.0± 4.42 94.0± 6.29 94.0± 5.54 98.7± 2.67 97.3± 3.27 96.7± 4.47 97.3± 4.42

glass 52.8± 8.72 69.1±6.40 • 72.9±7.85 • 63.5±8.08 • 63.1±7.73 • 69.7±6.55 • 70.6±8.82 •

vehicle 79.4± 4.49 73.8±4.48 ◦ 75.7± 3.56 80.4± 4.50 80.4± 4.23 80.4± 4.53 79.7± 4.61

segment 95.2± 1.18 97.1±0.93 • 98.1±0.85 • 96.3±0.93 • 96.1± 0.89 95.8± 1.38 96.2± 1.30

twitter 55.8± 5.12 54.5± 2.89 60.5± 7.99 62.2±3.66 • 62.2±4.15 • 52.3± 5.54 52.3± 5.54

Table 5.2: Results for standard PSVMs. Shown are classification accuracy means with one standard
deviation. ◦ indicates statistically significant improvement of PSVMs over the other algorithm,
• indicates statistically significant degradation.

Dataset PSVM with
Sampling

C4.5
Boosted
C4.5

Linear SVM
Boosted

Linear SVM
Polynomial

SVM
Multilayer
Perceptron

isolated 84.0± 7.0 98.1±1.79 • 98.5±1.46 • 62.5± 0.0 ◦ 62.5± 0.0 ◦ 81.9± 4.38 80.6± 2.81

striated 96.9± 3.84 69.4±13.4 ◦ 90.1±7.38 ◦ 48.5±3.94 ◦ 53.4±16.3 ◦ 72.8±4.18 ◦ 75.0±25.0 ◦

spirals 60.7± 34.9 0.0± 0.0 ◦ 0.0± 0.0 ◦ 0.0± 0.0 ◦ 5.63±8.97 ◦ 0.0± 0.0 ◦ 20.6±28.9 ◦

iris 86.7± 13.0 94.0± 6.29 94.0± 5.54 98.7±2.67 • 97.3±3.27 • 96.7±4.47 • 97.3±4.42 •

glass 47.6± 12.9 69.1±6.40 • 72.9±7.85 • 63.5±8.08 • 63.1±7.73 • 69.7±6.55 • 70.6±8.82 •

vehicle 75.4± 3.83 73.8± 4.48 75.7± 3.56 80.4±4.50 • 80.4±4.23 • 80.4±4.53 • 79.7±4.61 •

segment 94.4± 1.86 97.1±0.93 • 98.1±0.85 • 96.3±0.93 • 96.1±0.89 • 95.8± 1.38 96.2±1.30 •

twitter 54.0± 8.86 54.5± 2.89 60.5± 7.99 62.2±3.66 • 62.2±4.15 • 52.3± 5.54 52.3± 5.54

Table 5.3: Results for PSVMs with weighted sampling. Shown are classification accuracy means with
one standard deviation. ◦ indicates statistically significant improvement, • statistically significant
degradation.

is for the other algorithms. The glass domain has an especially small number of instances in certain

classes, and since we hold out 25% of the training data for validation after each shift, this may

explain PSVM’s poor performance in this dataset.

It is worth making a few observations about the performance of the other algorithms on these

datasets. Decision trees do quite well in the isolated dataset, which consists of axis-aligned clusters

that the C4.5 algorithm is easily able to accommodate. In addition, linear SVMs perform very

well on the Twitter dataset; linear SVMs are known to perform well in natural language domains

(Joachims, 1998), where feature vectors are typically sparse and high-dimensional. Note how closely

these strengths are tied to particular datasets and the particular models these algorithms learn. We

see the drawbacks of this specificity clearly in the results; C4.5 falls apart in even a clean dataset

with non-axis-aligned clusters, such as striated, and linear SVMs are unable to handle non-linearly

separable data.

AdaBoost generally improves the performance of C4.5, as other researchers have noted. However

it seems to help linear SVMs very little, hence justifying the use of few iterations in the version

of PSVMs with resampling. AdaBoosted linear SVMs finished in fewer than 10 iterations in the
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Noiseless Noisy

Regular 16 - 13 - 19 14 - 7 - 21

Sampling 14 - 23 - 11 13 - 23 - 6

Noiseless Noisy

Regular
vs.

Sampling

1 - 1 - 6 3 - 1 - 3

Table 5.4: The left table shows the total number of wins, losses, and ties for PSVMs and PSVMs
with weighted sampling over all the other algorithms, in noiseless and noisy datasets. The right table
shows wins, losses, and ties of regular PSVMs over PSVMs with weighted sampling in noiseless and
noisy datasets. Overall, standard PSVMs perform on par with the other algorithms, and perform
somewhat above average in the presence of noise. On the other hand, PSVMs with weighted sampling
do not perform as well, especially in noisy datasets.

synthetic datasets and glass, and performance on the others with as many as 100 iterations was

statistically identical to performance with 10 iterations.

The spirals dataset is especially difficult for all algorithms, though we would expect good results

from SVMs with a radial basis kernel. Out of the algorithms I tested, multilayer perceptrons are the

only other algorithm besides PSVMs that perform relatively well on spirals. Multilayer perceptrons

are capable of representing arbitrary functions, but only given sufficient training time, data, and

hidden nodes; their major downsides are needing to define the network structure prior to learning,

and their vastly longer training time. The focus of these experiments and this thesis in general is

improving classification accuracy, so I did not time the algorithms precisely. However, it is worth

noting that multilayer perceptrons took on the order of days to run the full suite of experiments,

whereas the other algorithms, including PSVMs, each took on the order of minutes or hours.

PSVMs with weighted sampling tend to perform worse than standard PSVMs on the UCI bench-

mark and Twitter datasets. It seems likely that unless data distributions are particularly difficult,

such as in the spirals dataset, the benefits of using all the available training data outweigh the ben-

efits of sampling and reweighting the data. It is also possible that optimizing the percentage of data

sampled and the number of times sampling occurs could improve performance. Though we could

determine close-to-optimal parameter settings with grid search, our goal is to devise an algorithm

to handle the widest range of complex datasets without the need for significant parameter tuning;

in this regard, PSVMs with weighted sampling are not ideal.

Table 5.5 indicates which iteration of shifting is used as the final ensemble (where iteration

zero would be the initial ensemble of ESVMs). This shows that the initial ESVM ensemble in fact

never has the highest accuracy on the validation set, and so the shifting operation improves the

performance of the model and reduces its size. In particular, the reduction in ensemble size implies

that the PSVM algorithm will scale better to larger datasets than ESVMs will.

Comparing the sizes of final ensembles is also important in assessing the performance of the

two versions of PSVMs. Clearly the sampled version generates smaller ensembles, though typically

at the cost of accuracy. Furthermore, it appears that the number of models retained in the final

ensemble depends on not only the size of the dataset (which we would expect, given that we learn

an initial ESVM for each data instance), but also to some extent the complexity of class boundaries

or the degree to which they can be linearly approximated. For instance, if we look at the standard

PSVM ensembles in the noiseless datasets, isolated and striated both have 800 instances, but iso-

lated consists of circular clusters while striated consists of linear clusters; and accordingly, the final

ensemble in isolated has over twice as many models as the final ensemble in striated. As another
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Noiseless datasets ESVM PSVM Sampling

isolated 720 5 323 6 124

striated 720 8 149 6 88

spirals 175 5 47 4 29

iris 135 7 54 8 13

glass 193 7 35 7 15

vehicle 761 8 110 8 61

segment 2079 8 453 8 172

twitter 540 9 42 7 32

Noisy datasets PSVM Sampling

isolated 6 122 6 70

striated 6 170 6 93

spirals 4 56 6 20

iris 8 24 8 11

glass 8 37 6 20

vehicle 8 113 8 64

segment 8 323 8 164

Table 5.5: Additional statistics for the final ensembles of PSVMs for noiseless and noisy datasets.
Also listed is the number of models for the ESVM ensemble, i.e., the number of instances in the
training set for each fold; these numbers are identical for noiseless and noisy datasets. In each PSVM
column, the left value is average iteration used, the right value is the average number of models in
the final ensemble. All averages are rounded to the nearest whole number.

These statistics indicate that the shifting procedure is both improving accuracy and decreasing
ensemble size compared to the initial ensemble of ESVMs. In addition, the version with weighted
sampling uses a smaller number of models than the standard version, which we would expect because
the ensemble is trained using a subset of the data; this is worth considering if ensemble size is a
concern.

piece of evidence, note the relatively small number of models in the Twitter dataset, which is best

captured by the linear classifiers I tested.

5.3 Noise Experiments

Considering classification in the presence of noise is important when the objective is high performance

in real-world datasets. It is especially important given that the goal of the PSVM algorithm, namely

to be flexible enough to capture difficult data distributions, is exactly the kind of goal that can

result in vulnerability to noisy data. Hence I repeated the experiments described above, on the

same datasets but with noise injected into the class labels. These results are reported in Tables 5.6

and 5.7 for regular PSVMs and PSVMs with weighted sampling, respectively.

My method for injecting noise was the same as that of (Dietterich, 2000): I selected 10% of the

instances uniformly and without replacement, then changed their class labels to an incorrect one

chosen uniformly. Note that I assume the Twitter dataset is already noisy, as it has not been cleaned

of noise as the benchmarks have; because I could not quantify the baseline noise level, I did not

inject noise into this dataset.

Every algorithm’s performance degrades in the presence of noise, as we would expect. (The

spirals dataset is an anomaly; the dataset is so small and its class distribution so unusual that adding

noise seems to make it easier to partition for most algorithms.) In general, the PSVM ensemble is

fairly robust to the presence of noise. It is especially instructive to compare PSVMs with AdaBoost.

Recall that later iterations of AdaBoost tend to focus on data that has been misclassified in previous

iterations, and hence AdaBoost as a whole can be susceptible to noise. Therefore we would expect

the performance of AdaBoost to drop more significantly than that of PSVMs. Furthermore, the
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Dataset
PSVM
without
Sampling

C4.5
Boosted
C4.5

Linear SVM
Boosted

Linear SVM
Polynomial

SVM
Multilayer
Perceptron

isolated 71.9± 7.71 84.8±4.36 • 83.6±4.65 • 59.3±3.67 ◦ 57.9±3.71 ◦ 75.5± 4.91 73.9± 3.51

striated 76.8± 7.42 60.3±7.24 ◦ 64.3±6.55 ◦ 52.0±2.86 ◦ 56.8±7.36 ◦ 66.8±3.12 ◦ 67.4± 18.5

spirals 29.0± 15.4 9.79±6.28 ◦ 9.79±6.28 ◦ 11.9±10.2 ◦ 16.9± 17.1 10.3±6.95 ◦ 17.1± 13.4

iris 88.7± 5.21 84.7± 7.33 83.3± 7.45 90.0± 6.83 90.0± 6.15 90.0± 5.37 91.3± 6.70

glass 50.0± 5.50 62.2±7.46 • 66.3±8.87 • 53.7± 8.91 57.5±7.90 • 61.6±8.95 • 61.7±4.14 •

vehicle 68.1± 4.43 63.1±1.89 ◦ 67.6± 2.54 71.5± 3.57 69.1± 4.24 57.4±5.12 ◦ 71.0± 2.61

segment 84.3± 2.18 85.5± 2.30 85.4± 2.23 84.1± 1.82 84.0± 2.12 67.8±3.95 ◦ 85.4± 2.51

Table 5.6: Results for standard PSVMs in noisy datasets. Shown are classification accuracy means
with one standard deviation. ◦ indicates statistically significant improvement, • statistically signifi-
cant degradation.

Dataset PSVM with
Sampling

C4.5
Boosted
C4.5

Linear SVM
Boosted

Linear SVM
Polynomial

SVM
Multilayer
Perceptron

isolated 68.8± 5.81 84.8±4.36 • 83.6±4.65 • 59.3±3.67 ◦ 57.9±3.71 ◦ 75.5±4.91 • 73.9±3.51 •

striated 75.1± 10.1 60.3±7.24 ◦ 64.3±6.55 ◦ 52.0±2.86 ◦ 56.8±7.36 ◦ 66.8±3.12 ◦ 67.4± 18.5

spirals 57.8± 28.6 9.79±6.28 ◦ 9.79±6.28 ◦ 11.9±10.2 ◦ 16.9±17.1 ◦ 10.3±6.95 ◦ 17.1± 13.4

iris 76.7± 10.4 84.7± 7.33 83.3± 7.45 90.0±6.83 • 90.0±6.15 • 90.0±5.37 • 91.3±6.70 •

glass 43.4± 9.40 62.2±7.46 • 66.3±8.87 • 53.7±8.91 • 57.5±7.90 • 61.6±8.95 • 61.7±4.14 •

vehicle 59.1± 5.69 63.1± 1.89 67.6±2.54 • 71.5±3.57 • 69.1±4.24 • 57.4± 5.12 71.0±2.61 •

segment 80.6± 3.15 85.5±2.30 • 85.4±2.23 • 84.1±1.82 • 84.0±2.12 • 67.8±3.95 ◦ 85.4±2.51 •

Table 5.7: Results for PSVMs with weighted sampling in noisy datasets. Shown are classification
accuracy means with one standard deviation. ◦ indicates statistically significant improvement, •
statistically significant degradation.

performance of PSVMs with weighted sampling should drop more significantly than that of non-

sampled PSVMs, since re-weighting difficult instances is the aspect of AdaBoost that causes poor

performance in the presence of noise.

This hypothesis seems to be borne out by the accuracy results. Both PSVM algorithms retain

their advantage in the datasets with the trickiest class distributions, and regular PSVMs degrade

gracefully on the benchmark datasets as well. PSVMs with sampling perform especially badly

in the noisy benchmark data, as expected. More experimentation would be necessary to confirm

these results; in particular, running AdaBoost with a larger number of iterations would probably

demonstrate its vulnerability to noise more dramatically. It is also worth noting that for the most

part, the sizes of the final PSVM ensembles are not affected by the presence of noise (see Table 5.5).

This suggests that the algorithm is not retaining extra models to account for noisy instances.

5.4 Summary

In this chapter, I presented experimental results that show the PSVM algorithm performs with high

accuracy in a number of datasets with class distributions of varying complexity. This is good evidence

that the ensemble of PSVMs is in fact flexible enough to perform well in a variety of datasets without
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model selection, with fewer SVMs and higher accuracy than the ensemble of ESVMs. Standard

PSVMs are also relatively robust to noise in all datasets, unlike other flexible algorithms that tend

to overfit, such as AdaBoost. PSVMs with weighted sampling perform well when class distributions

are complicated and generate smaller ensembles, but perform poorly in simpler distributions and

are much more sensitive to noise.
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Chapter 6

Conclusion and Future Work

6.1 Summary of Contributions

This thesis presents the ensemble of prototype support vector machines (PSVMs), a novel algorithm

for performing supervised classification in datasets with complex class distributions. This work is

motivated primarily by the problem of model selection. When a data mining practitioner needs to

choose a classifier-learning algorithm for a dataset, he most likely has no a priori knowledge of the

class distributions that the algorithm will need to model. Because different algorithms learn different

kinds of models, it is often necessary to try multiple algorithms to determine which performs best

on the given data, a process that can be ad-hoc and time-consuming. The issues involved in finding

good models are exacerbated when distributions are especially complicated, when many algorithms

are liable to either over- or underfit.

In response to these challenges, the PSVM algorithm works by learning an ensemble of linear

classifiers tuned to different sets of instances in the training data. Such an ensemble is flexible

enough to have high performance in datasets with arbitrarily complex class boundaries with minimal

parameter tuning. It accomplishes this by leveraging both the power of SVMs as effective linear

classifiers and the power of ensembles to provide flexibility and improve accuracy without the need

to specify a particular kernel function. This algorithm is based on the ensemble of exemplar SVMs

for object recognition from (Malisiewicz et al., 2011), which learns an SVM for each instance in the

training set. The core of the PSVM approach is an initial ensemble of exemplar SVMs, followed by

a shifting algorithm that refines linear models, drops unnecessary models, and generalizes models

from single exemplars to clusters of similar instances, or prototypes.

I also introduce a variant of the PSVM algorithm that repeatedly learns ensembles of PSVMs

using increasingly large samples of the training set, each drawn according to a weight distribution

that adapts to the performance of the previous ensembles. This reweighting and resampling process

is borrowed from AdaBoost and can help the algorithm focus on the most difficult regions of the

feature space, with the costs of not always being able to train on all available data and being

potentially more susceptible to noise.

Finally, I report on the results of experiments comparing these two versions of PSVMs against

a number of different classification learning algorithms. I ran these algorithms on synthetic, bench-

mark, and real-world datasets, and in both the absence and presence of noise. The results demon-
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strate that PSVMs generally have the highest accuracy among all the algorithms I tested in the

datasets with the more complex distributions, and good performance in the more standard datasets.

This supports my claim that the PSVM algorithm provides a good balance of flexibility and high

performance. In addition, the results for noisy datasets provide evidence that PSVMs are more

robust to noise than other algorithms that seek to maximize flexibility. On the other hand, PSVMs

with weighted sampling have high accuracy in the classes with the most difficult class distributions

but perform poorly in the benchmark sets, and they also degrade more when noise is injected.

The main goal of the PSVM algorithm is to reduce the need to make data-dependent algorithmic

decisions before knowing about data distributions. While model selection is no longer necessary with

this algorithm, there are still parameters that must be set: the number of shifting iterations, the

size of the initial negative sets, and the probability of mining hard negatives, as well as the sampling

percentage for the version with weighted sampling. Optimal settings for these may be dataset-specific

and affect the quality of the final ensemble. This remains a limitation of this approach.

6.2 Future Work

There are several interesting directions for future work related to the PSVM algorithm. Further

experiments on more synthetic, benchmark, and real-world datasets would provide additional in-

formation on the capabilities of the algorithm. There is also opportunity for continued empirical

study comparing this algorithm against other ensemble-of-SVM algorithms, such as exemplar SVMs

(Malisiewicz et al., 2011) or profile SVMs (Cheng et al., 2010). A more thorough study of how the

various algorithms degrade in the presence of noise is necessary to ensure the perceived differences

are in fact statistically significant. Further experimentation could also confirm some of the conjec-

tures I made in Chapter 5, including how final ensemble sizes vary for datasets with different degree

of nonlinearity of decision boundaries.

It would also be interesting to explore a variety of modifications to the basic algorithm. For

example, it is possible that combining the final PSVMs in a way besides majority voting could have a

significant effect on the algorithm’s overall performance. Another modification would be to leverage

the ability of ensembles to select feature sets independently for each model. This can be useful

since different regions of the example space may be well-characterized by different combinations of

features. One elegant way of doing this would be to use 1-norm SVMs, which effectively perform

feature selection in tandem with learning the SVM by forcing the weights of certain features in the

linear model to be exactly zero; see (Tan et al., 2010) or (Zhu et al., 2004) for more details.

A more complicated change to the algorithm would be to generalize the various Euclidean dis-

tance computations to use different distance metrics or other possibly domain-specific measures of

similarity. This would affect the initialization of negatives and the generalization of positive sets

during shifting; in other words, it would affect what instances are considered part of a model’s local

region. Since a common aspect of complex datasets is that distance is not a reliable measure of sim-

ilarity, this could allow the ensemble to more effectively classify this kind of complex data. However,

in proposing such additions of domain-specific flexibility, it is important to remember that one of

the goals of the algorithm is to avoid the need to make these types of domain-specific choices.

One important thread of research I did not investigate in this thesis is a theoretical proof that

an ensemble of linear classifiers trained using the PSVM algorithm can provide accurate linear
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Figure 6.1: Examples of final ensembles in the isolated dataset for standard PSVMs (top) and
PSVMs with weighted sampling (bottom). These are certainly not what we would imagine linear
approximations of the decision boundaries to look like. However, a coarse approximation, or at least
reasonable partitioning of the space, is occurring; for instance, the outline of the triangle enclosing
all three clusters is visible, and particularly emphasized by the standard PSVM ensemble, which is
less sensitive to structural detail. While the mathematical theory of linear approximation may not
strictly apply, there is certainly some interesting reason for why these ensembles of linear classifiers
are able to perform so well (with over 95% accuracy on the test set in both cases). Images created
using matplotlib (Hunter, 2007).
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approximations of certain types of decision surfaces or functions, given some minimum number of

training instances and some number of shifting iterations. It is hard to envision what this theory

would look like, as so much of the PSVM algorithm depends on the properties of a specific dataset;

see Figure 6.1 for images of ensembles suggesting why developing this theory might be difficult.

There is certainly empirical evidence that PSVMs can perform with high accuracy in datasets with

a variety of different class distributions, and good reasons for this based on our understanding of

how SVMs and ESVMs work. Nonetheless, a rigorous argument that shows this must be true or

gives bounds on expected performance would be ideal.

Finally, it would be interesting to see how the PSVM algorithm compares with a similar clas-

sification algorithm that utilizes a preprocessing clustering step during training. One of the most

potentially fruitful ideas this work has explored is the possible connection between supervised learn-

ing without explicit model selection and unsupervised learning or clustering. My hypothesis is that

the shifting process of PSVMs enables the organic discovery of clusters without needing to spec-

ify the number of centroids as in k-means, and it would be worth exploring to what extent this

hypothesis is supported empirically and theoretically.
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