
Prototype Support Vector Machines:
Supervised Classification in Complex Datasets

April Tuesday Shen and Andrea Pohoreckyj Danyluk

Williams College

Abstract. Classifier learning generally requires model selection, which
in practice is often an ad hoc and time-consuming process that depends
on assumptions about the structure of data. To avoid this difficulty,
especially in real-world data sets where the underlying model is both un-
known and potentially complex, we introduce the ensemble of prototype
support vector machines (PSVMs). This algorithm trains an ensemble
of linear SVMs that are tuned to different regions of the feature space
and thus are able to separate the space arbitrarily, reducing the need
to decide what model to use for each dataset. We present experimental
results demonstrating the efficacy of PSVMs in both noiseless and noisy
datasets.

Keywords: Ensemble methods, Classification, Support Vector Machines

1 Introduction

The goal of classification is to accurately predict class labels for a set of data.
In machine learning, this is accomplished via algorithms that learn classification
models for particular types of class distributions from sets of labeled training
data. However, in real-world datasets, class distributions may be arbitrarily com-
plex, and they are not generally known before learning takes place. Hence a data
mining practitioner must choose an algorithm and its associated model without
prior knowledge about the class distributions of the dataset in question. This
often requires testing multiple models to find one that works well [1]. The pro-
cess of model selection, which is already arbitrary and time-consuming, becomes
even more problematic for datasets with the most difficult class distributions.

In this paper, we introduce the ensemble of prototype support vector ma-
chines (PSVMs)1 as a classification learning algorithm addressing the problem
of model selection in complex datasets. The PSVM algorithm learns a collection
of linear classifiers tuned to different regions of the space in order to separate
classes with arbitrarily complicated distributions. This algorithm is based on the
exemplar SVM (ESVM) approach [3], which trains a separate linear separator
specific to each instance in the training set. The PSVM algorithm trains an initial

1 Cheng et al. [2] refer to their profile support vector machines as PSVMs. In this
paper, PSVM should be taken to unambiguously refer to our prototype support
vector machines.

ensemble of ESVMs, but then iteratively improves boundaries to allow classi-
fiers to capture groups of similar instances. Hence these new classifiers are tuned
to more generalized prototypes rather than to specific exemplars. We present
empirical evidence that PSVMs are capable of high classification accuracy in a
variety of noiseless and noisy datasets with different class distributions.

The remainder of this paper is organized as follows. In Section 2 we moti-
vate the problem and introduce related work. In Section 3 we describe exemplar
SVMs in more detail than we have thus far. In Section 4 we describe our PSVM
algorithm. Section 5 details experiments comparing PSVMs with other classi-
fier learning algorithms on a selection of datasets. Finally, we summarize our
conclusions and suggest future work.

2 Motivation and Related Work

In supervised machine learning, we can think of a learned classifier as a model
or function that partitions the feature space into different regions correspond-
ing to the data points of different classes. Many learning algorithms and their
associated models are highly accurate fits to certain types of class distributions.
For datasets that are linearly separable, linear SVMs [4] are a good choice. Such
datasets include, for example, a number of text classification problems [5]. For
more complicated class distributions, such as ones where multiple noncontiguous
regions are mapped to the same class, C4.5 [6], a common decision tree learning
algorithm, is a better choice.

However, regardless of how aptly a given model captures a particular class
distribution, choosing an inappropriate model can still result in poor classifica-
tion performance. Of course, every learning algorithm has some inductive bias
that limits the set of possible models it explores. It is unreasonable to expect an
algorithm to be agnostic towards the structure of the data in question. The point
is that choices about what learning algorithm to use, and hence what model to
learn, must happen prior to training and generally without knowledge of what
the data distribution looks like. In many cases, this forces the practitioner to
simply train and test multiple algorithms in order to discover which one performs
the best, a time-consuming and ad hoc process.

Model selection is even more difficult in datasets with complex class distri-
butions – for instance, ones that are highly nonlinear or contain many small
disjuncts – since standard algorithms and models may not be sufficient in these
situations. There are many ways to attack the problem of complex class dis-
tributions directly. One approach is to reduce or reformulate the feature space,
since class boundaries may only seem complex when data is viewed in a partic-
ular space. Substantial research has been done in both feature selection (see [7]
for feature selection in supervised learning and [8] for feature selection in un-
supervised learning) and feature extraction (e.g., principle component analysis,
multidimensional scaling, constructive induction [9], and more recently, manifold
learning [10]). Unfortunately, all of these approaches still make strong assump-
tions about the fundamental underlying classifier models.

Other research has been concerned with the class distributions themselves
[11]. Some of this work is focused on specific types of difficult distributions, such
as highly unbalanced class distributions [12] or distributions that include many
small disjuncts [13]. While extremely valuable, this focused work does not tackle
the wider array of possible class distributions that present challenges to different
models and classification algorithms.

Another approach to handling complex class distributions is to learn classi-
fiers from different subsets of training examples. Such ensemble methods include,
for example, AdaBoost [14], which builds a series of models that increasingly fo-
cus on examples in the difficult-to-capture regions of the feature space.

Of particular relevance to us are approaches that attempt to approximate
complex decision surfaces with an ensemble of hyperplanes. These include exem-
plar SVMs [3], which we discuss in more detail in Section 3, and localized and
profile SVMs [2].

Localized and profile SVMs combine the benefits of SVMs with instance-
based methods in order to learn local models of the example space. Localized
SVMs train a new SVM model for each test instance using that instance’s nearest
neighbors from the training set. As expected, this is very slow at test time.
Profile SVMs also defer SVM learning to test time, but take advantage of the
fact that multiple nearby test examples may require only a single SVM in that
region. Profile SVMs use a variation of k-means to cluster training examples
based on their relationship to the test examples, before learning a local SVM for
each cluster. While profile SVMs are demonstrably more efficient than localized
SVMs, they still defer training to test time, which may be unreasonable for many
applications. Our approach differs from the localized SVM framework in that it
is able to approximate a range of complex decision surfaces with ensembles of
linear SVMs without the reliance on test examples of transductive or quasi-
transductive [2] approaches.

3 Exemplar Support Vector Machines

In this section we discuss exemplar SVMs (ESVMs) in greater detail, as they are
a foundation on which our algorithm is based. Exemplar SVMs were developed
for object recognition [3]. The ESVM algorithm trains a separate SVM for each
exemplar image from the training set, with that exemplar as the sole positive
instance and many instances of the other classes as negative instances. If one
of these exemplar SVMs positively classifies a novel instance, then this suggests
that the novel instance shares the class label of (i.e., depicts the same object as)
that model’s exemplar. Thus an ensemble of ESVMs can be used to classify new
data instances, either through voting or a more complicated procedure.

Object recognition tasks provide a good example of the types of complex data
distributions we seek to handle. Consider, for instance, four images containing
front and side views of bicycles and motorcycles, respectively. The two containing
side views are conceivably closer in pixel-value feature spaces than are the front

and side views of a motorcycle (or bicycle), yet it is the objects that we wish to
identify – i.e., motorcycle or bicycle – not the orientation.

The ESVM framework is well-motivated for object recognition and other
domains with complex class distributions for a number of reasons. Learning a
number of separate classifiers permits each classifier to focus on a difference
feature subset. This can be useful since different regions of the example space
may be well-characterized by different combinations of features.

An approach based on ensembles and exemplars also provides comprehensive
coverage of the feature space, which is critical for classes whose instances could
potentially lie in a number of diverse regions of the space. The existence of at
least one exemplar in each of these regions can allow the ensemble as a whole
to recognize their presence, without the need to create a single overly general
classifier to accommodate them.

The ESVM algorithm is an appealing starting point for our work as it lever-
ages the power of both SVMs and ensembles to accommodate complexity. At
the same time, the fact that it learns a separate SVM for each training instance
makes it unnecessarily time- and space-intensive for many datasets. Our ap-
proach begins with ESVMs but then learns a set of SVMs that are tuned to
general prototypes, rather than specific exemplars.

4 The Prototype SVM Algorithm

In this section we describe how we train an ensemble of prototype support vector
machines (PSVMs). The algorithm begins by training an ensemble of exemplar
support vector machines (ESVMs). It then iteratively improves and generalizes
the boundaries of the SVMs to achieve the final ensemble of PSVMs. There are
three major components of the main PSVM algorithm: initialization, shifting
of boundaries, and prediction. Algorithm 1 describes the high-level training of
PSVMs, showing how these three components are used.

4.1 Initialization

The algorithm first trains an ensemble of ESVMs, with one model for each
instance in the training set. This requires that the algorithm create a training
set of positive and negative examples specific to each ESVM. Initializing positive
sets is straightforward, as each set is a single example that serves as the exemplar
for the ESVM. In theory, negative sets could contain every instance of a different
class from the exemplar. However, we do not want the single positive instance
to be overwhelmed by negative instances. Furthermore, in spaces with highly
variable class distributions, distant regions of the space may have no influence in
how local regions should be partitioned, so negatives far from the exemplar might
be useless or even detrimental for learning good classifiers. Finally, in general,
classes will not be linearly separable, so in order to learn relatively high-quality
linear discriminants, the algorithm chooses a sample of the potential negatives
that is linearly separable from the exemplar.

Algorithm 1 Train(T): Train an ensemble of PSVMs.

Input: set of labeled training data, T
Parameters: number of iterations, s, and fraction of data to hold out for vali-

dation, v
1: Split data into training and validation sets, D and V .
2: P ← [[di] for di ∈ D] # List of positive sets, each initially just the exemplar.
3: N ← [ChooseNegatives(D, di) for di ∈ D] # List of negative sets.
4: for j = 0, . . . , s do
5: Ej ← [] # The ensemble being trained on this iteration.
6: for Pi ∈ P and Ni ∈ N do
7: Train a linear SVM, using Pi and Ni.
8: Add this SVM to Ej .
9: aj ←Test(V,Ej) # Accuracy of Ej on V .

10: P,N ← Shift(D,Ej , P,N)
11: return ensemble Ej with highest accuracy on V

To accommodate these issues, we choose negatives in the manner described
in Algorithm 2. We first find the negative closest in Euclidean distance to the
exemplar. This defines a hyperplane passing through the exemplar and normal
to the vector between the exemplar and that negative. The candidate negatives
are then those that lie on the positive side of this hyperplane (i.e., the same
side of the hyperplane as the closest negative). Note that no margin is enforced,
and the hyperplane being considered is only a very rough approximation of the
hyperplane that will be learned by the SVM algorithm. From those candidate
negatives, the algorithm chooses only a small number, k, of them. The number
can be user-selected, although empirically about seven negatives seems to work
reasonably well. The k negatives chosen are those closest to the exemplar, so
that the training set for each model is kept mostly localized and the training
process is not “distracted” by instances in distant regions of the feature space.

Once a negative set for each exemplar has been initialized, the algorithm
trains an SVM for each exemplar, as in the ESVM algorithm.

4.2 Shifting

After training the initial ensemble of ESVMs, we shift the boundaries according
to Algorithm 3. (Note that the SVMs in Malisiewicz et al.’s original ESVM
approach are shifted and generalized as well, though by a different process and
not for the purpose of creating prototypes.) Shifting in our PSVM algorithm
accomplishes three main goals:

1. It generalizes classifiers from a single exemplar to a cluster of nearby in-
stances.

2. It adjusts boundaries that misclassified negative instances.
3. It removes useless classifiers from the ensemble altogether.

Algorithm 2 ChooseNegatives(D, di): Initialize set of negatives for a given
data instance.
Input: set of training data, D, and training instance, di
Parameters: number of negatives to return, k
1: Ni ← []
2: Di ← all instances in D of a different class label from di
3: Compute Euclidean distance from di to each element of Di.
4: Sort Di in ascending order by distance.
5: x← closest negative in Di

6: n← (x−di)/||x−di||# Normal vector to the hyperplane passing through di.
7: for dj ∈ Di do
8: if n · (dj − di) > 0 then
9: Add dj to Ni

10: if |Ni| = k then
11: return Ni

12: return Ni

Algorithm 3 Shift(D,E, P,N): Adjust and drop models from the ensemble.

Input: set of training data, D; ensemble of models, E;
positive and negative sets for each model, P and N

Parameters: probability to add to negative set, p
1: C ← [[] for dj ∈ D] # List of candidate models for each dj.
2: for mi ∈ E and dj ∈ D do
3: if mi classifies dj positively then
4: if class(dj) = class(mi) then
5: Compute the distance of dj to mi’s exemplar.
6: Add mi and its distance to the list of candidates Cj .
7: else # dj is misclassified, i.e. a hard negative.
8: Add dj to mi’s negative set Ni with some probability p.
9: for dj ∈ D do

10: Add dj to the positive set Pk, where mk is the closest model in Cj .
11: for mi ∈ E do
12: if mi did not classify anything positively then
13: Remove mi from the ensemble, by removing Pi from P and Ni from N .
14: return P,N

Generalization is at the core of what turns exemplar SVMs into prototype
SVMs. The algorithm generalizes by adding new instances to the positive sets
of models. For a given instance, we define a candidate model to be one that
classifies the instance positively and whose exemplar is of the same class as the
new instance. These candidate models are ones that could be improved by adding
this new instance to their positive sets. But it could be problematic to add each
instance to all of its candidate models. Because linear classifiers simply divide
the space into half-spaces, they run a serious risk of overgeneralizing by adding
too many positives that may have nothing to do with the original exemplar
and its cluster. To avoid this, if a particular instance is positively classified by
multiple models, the algorithm only adds it to the positive set of the model with
the closest exemplar. As in the initialization of negatives, this helps keeps each
model tuned to a local region rather than attempting to capture wide swaths of
the feature space.

The algorithm also improves the models by adding misclassified negative
instances to their negative sets. This performs a kind of hard negative mining.
If we discover that a model classifies an instance as a positive example when it
should be a negative, we need to shift the linear separator to exclude the negative
example. To do this, we consider adding the negative instance explicitly to the
negative set for that model. However, again since we are dealing with complicated
class distributions and we want to keep models localized, some negatives actually
should be classified incorrectly by individual models, and there is no principled
way of identifying these in every possible dataset. Hence we only add to the
negative set with some probability, as set by the user. This has the additional
benefit of adding randomness and hence robustness to the algorithm.

The final step in the shifting algorithm is to remove models that do not clas-
sify any instances positively. Depending, in part, on the choice of regularization
parameter, some SVMs may default to classifying all examples as negative. These
are not useful for the overall ensemble and are therefore removed. Fortunately,
the use of an ensemble provides redundancy; since the algorithm begins with
a classifier for each instance of the training data, some models can be dropped
from the ensemble without detriment, unless the class distribution is extremely
difficult. Dropping models also provides some robustness to noise, as noisy ex-
emplars may be more difficult to separate from their closest negatives.

We perform the shifting procedure some number of times as specified by
the user. After each shift, the algorithm trains a new ensemble with the new
positive and negative sets, then tests this ensemble on a held-out validation set.
The ensemble with the highest classification accuracy on the validation set is
retained. Empirically, we find that accuracy generally stabilizes fairly quickly –
between 10 and 20 iterations at most.

4.3 Prediction

For validation after each shift and at test time, the ensemble of PSVMs predicts
class labels for novel instances as follows. For each new instance, if a model
classifies it positively, this corresponds to a vote for that model’s positive class

(i.e., the class of its original exemplar). We also generate the probability that the
instance should be assigned the model’s positive class, as in [15], and sum these
probability values rather than the raw votes. The predicted class label assigned
by the entire ensemble is simply the class with the maximum sum of weighted
votes.

5 Experiments and Results

In this section we discuss our experiments. Overall, our PSVM algorithm per-
forms better than the other algorithms we tested on datasets with the most
complicated class distributions, and its performance is not significantly worse
than the other algorithms when applied to simpler data distributions. We also
demonstrate that our PSVM algorithm degrades gracefully in the presence of
noise.

5.1 Experimental Setup

We tested our PSVM algorithm against C4.5 [6], AdaBoost [14] with C4.5 as
the base classifier, linear SVMs [4], AdaBoost with linear SVMs as the base
classifier, SVMs with a quadratic kernel, and multilayer perceptrons trained
with backpropagation [16]. We chose these for their generally good performance
and their varied strengths. For each algorithm, we used the implementations
provided by Weka [17]. In particular, we used Weka’s wrapper of LIBSVM [15]
for the SVM experiments, as we also used LIBSVM for our PSVM algorithm.

We used Weka’s default parameters for our experiments, except we reduced
the training time of multilayer perceptrons from 500 to 200 iterations for reasons
of time. Weka’s default number of iterations for AdaBoost is quite low, namely
10, but we note that AdaBoosted linear SVMs finished in fewer than 10 iterations
in the synthetic datasets and glass, and performance on the other datasets with
as many as 100 iterations was statistically identical to performance with 10
iterations.

For PSVMs we used the following default parameters: v = 25% (percent of
data used for validation), s = 10 (iterations of shifting), k = 7 (number of initial
negatives), and p = 0.5% (hard negative mining probability).

There are three general categories of datasets we used in our experiments.
These are listed in Table 1. First are synthetic datasets (see Figure 1), specifically
designed to have unusual class distributions to provide a proof of concept of
the power of PSVMs. The spirals dataset is a standard benchmark for neural
networks originally from CMU [18]; we generated the other two. In isolated, each
cluster is normally distributed and the background data is uniform outside three
standard deviations of each cluster’s mean. In striated, each stripe is normally
distributed with greater standard deviation in one direction. Next are benchmark
datasets from UCI’s Machine Learning Repository [19]. The last dataset is a
natural language classification task from the Semantic Evaluation (SemEval)
workshop [20]. The data consists of raw Twitter messages, or tweets, and the task

is to classify them according to their sentiment as objective (i.e., no sentiment),
positive, neutral, or negative.

Table 1: The datasets used in the experiments. The top three are synthetic, with
the spirals dataset taken from CMU’s Neural Networks Benchmarks [18]. The
next four are benchmark datasets from UCI’s Machine Learning Repository [19].
The Twitter dataset is from SemEval [20].

Dataset Instances Features (type) Classes (instances per class)

Synthetic isolated 800 2 (real) 2 (500 / 300)
striated 800 2 (real) 2 (400 / 400)
spirals 194 2 (real) 2 (97 / 97)

UCI iris 150 4 (real) 3 (50 / 50 / 50)
glass 214 9 (real) 6 (70 / 76 / 17 / 13 / 9 / 29)
vehicle 846 18 (integer) 4 (212 / 217 / 218 / 199)
segment 2310 19 (real) 7 (330 each)

Real-world twitter 600 2715 (integer) 4 (99 / 157 / 30 / 314)

Fig. 1: Synthetic two-dimensional datasets: isolated, striated, and spirals.

The Twitter dataset contained only raw tweets and sentiment labels, and
hence we preprocessed and featurized that dataset. Much research has gone into
good feature representations for natural language texts and tweets in particular
(see, for example, [21] or [22]), but as the focus of our work is not sentiment
analysis, we used a basic but reasonable set of features for this data, including
single words, links, usernames, hashtags, standard emoticons, and words from
the MPQA Subjectivity Lexicon [23].

5.2 Results on Datasets With No Noise Added

For each algorithm, we report the results of ten-fold cross validation on each
dataset. Table 2 compares our PSVMs with each of the other algorithms. Also see
Table 3 for counts of wins, losses, and ties of PSVMs over the other algorithms.

Overall, the PSVM algorithm performs about as well as the other algorithms
in all datasets, and has significantly higher accuracy in the datasets with the

Table 2: Experiment results. Shown are classification accuracy means with one
standard deviation. ◦ indicates statistically significant improvement of PSVMs
over the other algorithm, • indicates statistically significant degradation based
on a corrected paired T-test at the 0.05 level.

Dataset PSVM C4.5
Boosted
C4.5

Linear
SVM

Boosted
Linear
SVM

Polynomial
SVM

Multilayer
Percep-
tron

isolated 90.9(4.07) 98.1(1.79)• 98.5(1.46)• 62.5(0.0)◦ 62.5(0.0)◦ 81.9(4.38)◦ 80.6(2.81)◦
striated 97.3(1.66) 69.4(13.4)◦ 90.1(7.38)◦ 48.5(3.94)◦ 53.4(16.3)◦ 72.8(4.18)◦ 75.0(25.0)◦
spirals 21.8(18.9) 0.0(0.0)◦ 0.0(0.0)◦ 0.0(0.0)◦ 5.63(8.97)◦ 0.0(0.0)◦ 20.6(28.9)
iris 96.0(4.42) 94.0(6.29) 94.0(5.54) 98.7(2.67) 97.3(3.27) 96.7(4.47) 97.3(4.42)
glass 52.8(8.72) 69.1(6.40)• 72.9(7.85)• 63.5(8.08)• 63.1(7.73)• 69.7(6.55)• 70.6(8.82)•
vehicle 79.4(4.49) 73.8(4.48)◦ 75.7(3.56) 80.4(4.50) 80.4(4.23) 80.4(4.53) 79.7(4.61)
segment 95.2(1.18) 97.1(0.93)• 98.1(0.85)• 96.3(0.93)• 96.1(0.89) 95.8(1.38) 96.2(1.30)
twitter 55.8(5.12) 54.5(2.89) 60.5(7.99) 62.2(3.66)• 62.2(4.15)• 52.3(5.54) 52.3(5.54)

Table 3: The total number of wins, losses, and ties for PSVMs over other algo-
rithms, in noiseless and noisy datasets.

Noiseless Noisy
Regular 16 - 13 - 19 14 - 7 - 21

most difficult class distributions. Its performance is especially impressive in the
synthetic datasets. This is no surprise; while those datasets were not designed
specifically for this algorithm, they were designed to exemplify particularly dif-
ficult class distributions. Although PSVMs do not perform as impressively in
the other domains, in general they do not perform significantly worse than the
other algorithms. The exceptions are glass and segment; we hypothesize that
this is because these are the datasets with the largest number of classes, and
the extension of SVMs to multiclass domains is not as natural as it is for the
other algorithms. The glass domain has an especially small number of instances
in certain classes, and since we hold out 25% of the training data for validation
after each shift, this may explain PSVM’s poor performance in this dataset.

The spirals dataset is especially difficult for all algorithms, though we would
expect good results from SVMs with a radial basis kernel. Of the algorithms
tested, multilayer perceptrons are the only other algorithm besides PSVMs that
perform relatively well on spirals. However, it is worth noting that multilayer
perceptrons took on the order of days to run the full suite of experiments, whereas
the other algorithms, including PSVMs, each took on the order of minutes or
hours.

5.3 Results on Datasets With Noise Added

In order to test the robustness of PSVMs to noise, we repeated the experiments
described above, on the same datasets but with noise injected into the class
labels. These results are reported in Table 4.

Table 4: Results for PSVMs in noisy datasets. Shown are classification accuracy
means with one standard deviation. ◦ indicates statistically significant improve-
ment, • statistically significant degradation.

Dataset PSVM C4.5
Boosted
C4.5

Linear
SVM

Boosted
Linear
SVM

Polynomial
SVM

Multilayer
Percep-
tron

isolated 71.9(7.71) 84.8(4.36)• 83.6(4.65)• 59.3(3.67)◦ 57.9(3.71)◦ 75.5(4.91) 73.9(3.51)
striated 76.8(7.42) 60.3(7.24)◦ 64.3(6.55)◦ 52.0(2.86)◦ 56.8(7.36)◦ 66.8(3.12)◦ 67.4(18.5)
spirals 29.0(15.4) 9.79(6.28)◦ 9.79(6.28)◦ 11.9(10.2)◦ 16.9(17.1) 10.3(6.95)◦ 17.1(13.4)
iris 88.7(5.21) 84.7(7.33) 83.3(7.45) 90.0(6.83) 90.0(6.15) 90.0(5.37) 91.3(6.70)
glass 50.0(5.50) 62.2(7.46)• 66.3(8.87)• 53.7(8.91) 57.5(7.90)• 61.6(8.95)• 61.7(4.14)•
vehicle 68.1(4.43) 63.1(1.89)◦ 67.6(2.54) 71.5(3.57) 69.1(4.24) 57.4(5.12)◦ 71.0(2.61)
segment 84.3(2.18) 85.5(2.30) 85.4(2.23) 84.1(1.82) 84.0(2.12) 67.8(3.95)◦ 85.4(2.51)

For injecting noise we followed the same methodology as in [24]: we selected
10% of the instances uniformly and without replacement, then changed their
class labels to an incorrect one chosen uniformly. Note that we assume the Twit-
ter dataset is already noisy; because we could not quantify the baseline noise
level, we did not inject noise into this dataset.

Every algorithm’s performance degrades in the presence of noise, as we would
expect. (The spirals dataset is an anomaly; the dataset is so small and its class
distribution so unusual that adding noise seems to make it easier to partition for
most algorithms.) In general, the PSVM ensemble is fairly robust to the presence
of noise. PSVMs retain their advantage in the datasets with the trickiest class
distributions, and they degrade gracefully on the benchmark datasets as well.
It is also worth noting that, for the most part, the sizes of the final PSVM
ensembles are not affected by the presence of noise (see Table 5). This suggests
that the algorithm is not retaining extra models to account for noisy instances.
In addition, note that the number of models in the PSVM ensemble for every
dataset is less than the number in the baseline ESVM ensemble. Because the
final ensemble output by our PSVM algorithm is the one from the best iteration
so far as determined by a validation set, it is clear that the unshifted ESVMs
(i.e., the first iteration in the PSVM learning process) are never found to be
best.

6 Summary and Future Work

In this paper we have described the ensemble of prototype support vector ma-
chines (PSVMs), an algorithm for performing supervised classification in datasets
with complex class distributions. This work is motivated primarily by the prob-
lem of model selection. When a data mining practitioner needs to choose a
classifier-learning algorithm for a dataset, he most likely has no a priori knowl-
edge of the class distributions that the algorithm will need to model. The issues
involved in finding good models are exacerbated when distributions are especially
complicated.

In response to these challenges, the PSVM algorithm works by learning an
ensemble of linear classifiers tuned to different sets of instances in the training

Table 5: Average number of models in the final ensembles of PSVMs for noiseless
and noisy datasets, rounded to the nearest whole number. Also listed is the
number of models for the initial ESVM ensemble; these numbers are identical
for noiseless and noisy datasets.

ESVM Noiseless Noisy
isolated 720 323 122
striated 720 149 170
spirals 175 47 56
iris 135 54 24
glass 193 35 37
vehicle 761 110 113
segment 2079 453 323
twitter 540 42 X

data. Such an ensemble is flexible enough to have high performance in datasets
with arbitrarily complex class boundaries, with minimal parameter tuning. It
accomplishes this by leveraging both the power of SVMs as effective linear clas-
sifiers and the power of ensembles to provide flexibility and improve accuracy
without the need to specify a particular kernel function. This algorithm is based
on the ensemble of exemplar SVMs for object recognition from [3]. The core of the
PSVM approach is an initial ensemble of exemplar SVMs, followed by a shifting
algorithm that refines linear models, drops unnecessary models, and generalizes
models from single exemplars to clusters of similar instances, or prototypes.

Our results demonstrate that PSVMs generally have the highest accuracy
among the algorithms we tested in the datasets with the more complex distribu-
tions, and good performance in standard benchmark datasets. In addition, the
results for noisy datasets provide evidence that PSVMs are more robust to noise
than other algorithms that seek to maximize flexibility.

The main goal of the PSVM algorithm is to reduce the need to make data-
dependent algorithmic decisions before knowing about data distributions. While
model selection is no longer necessary with this algorithm, there are still pa-
rameters that must be set: the size of the validation set, the number of shifting
iterations, the size of the initial negative sets, and the probability of mining
hard negatives. Optimal settings for these may be dataset-specific and affect the
quality of the final ensemble. This remains a limitation of our approach.

There are several interesting directions for future work related to the PSVM
algorithm. Further experiments on synthetic, benchmark, and real-world datasets
would provide additional information on the capabilities of the algorithm. It
would also be worthwhile to explore a variety of modifications to the basic algo-
rithm. For example, we might leverage the ability of ensembles to select feature
sets independently for each model. This can be useful since different regions of
the example space may be well-characterized by different combinations of fea-
tures. One elegant way of doing this would be to use 1-norm SVMs to effectively

perform feature selection in tandem with learning the SVM [25]. Finally, it would
be interesting to investigate the connection of the PSVM algorithm with simi-
lar algorithms that might utilize an explicit clustering step during training. We
hypothesize that the shifting process of PSVMs enables the organic discovery
of clusters without needing to specify the number of centroids as in k-means. It
would be worth exploring to what extent this hypothesis is supported empirically
and theoretically.

References

1. Chatfield, C.: Model uncertainty, data mining and statistical inference. Journal of
the Royal Statistical Society. Series A (Statistics in Society) 158(3) (1995)

2. Cheng, H., Tan, P.N., Jin, R.: Efficient algorithm for localized support vector
machine. IEEE Trans. Knowl. Data Eng. 22(4) (2010)

3. Malisiewicz, T., Gupta, A., Efros, A.A.: Ensemble of exemplar-SVMs for object
detection and beyond. In: Proceedings of the 2011 International Conference on
Computer Vision. ICCV ’11 (2011)

4. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3) (1995)
5. Joachims, T.: Text categorization with support vector machines: Learning with

many relevant features. In: Proceedings of the 10th European Conference on Ma-
chine Learning. ECML ’98 (1998)

6. Quinlan, J.R.: C4. 5: programs for machine learning. Morgan Kaufmann (1993)
7. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The

Journal of Machine Learning Research 3 (2003)
8. Ferreira, A., Figueiredo, M.: Unsupervised feature selection for sparse data. In: Pro-

ceedings of the 2011 European Symposium on Artificial Neural Networks. ESANN
’11 (2011)

9. Callan, J.P., Utgoff, P.E.: A transformational approach to constructive induction.
In: Proceedings of the 8th International Workshop on Machine Learning. ML ’91
(1991)

10. Xiao, R., Zhao, Q., Zhang, D., Shi, P.: Facial expression recognition on multiple
manifolds. Pattern Recognition 44(1) (2011)

11. Japkowicz, N.: Concept-learning in the presence of between-class and within-class
imbalances. In: Proceedings of the 14th Biennial Conference of the Canadian So-
ciety on Computational Studies of Intelligence: Advances in Artificial Intelligence.
AI ’01 (2001)

12. Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: one-
sided selection. In: Proceedings of the 1997 International Conference on Machine
Learning. ICML ’97 (1997)

13. Holte, R., Acker, L., Porter, B.: Concept learning and the problem of small dis-
juncts. In: Proceedings of the 1989 International Joint Conference on Artificial
Intelligence. IJCAI ’89 (1989)

14. Schapire, R.E.: A brief introduction to boosting. In: Proceedings of the 1999
International Joint Conference on Artificial Intelligence. IJCAI ’99 (1999)

15. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2(3) (May 2011)

16. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations
by error propagation. In Rumelhart, D.E., McClelland, J.L., PDP Research Group,
C., eds.: Parallel distributed processing: explorations in the microstructure of cog-
nition, vol. 1. MIT Press, Cambridge, MA, USA (1986) 318–362

17. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1)
(November 2009) 10–18

18. White, M., Sejnowski, T., Rosenberg, C., Qian, N., Gorman, R.P., Wieland, A., De-
terding, D., Niranjan, M., Robinson, T.: Bench: CMU neural networks benchmark
collection. http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/

neural/bench/cmu/0.html (1995)
19. Bache, K., Lichman, M.: UCI machine learning repository. http://archive.ics.

uci.edu/ml (2013)
20. Wilson, T., Kozareva, Z., Nakov, P., Ritter, A., Rosenthal, S., Stoyanov, V.:

Semeval-2013 task 2: Sentiment analysis in twitter. http://www.cs.york.ac.uk/

semeval-2013/task2/ (2013)
21. Barbosa, L., Feng, J.: Robust sentiment detection on twitter from biased and

noisy data. In: Proceedings of the 23rd International Conference on Computa-
tional Linguistics: Posters. COLING ’10, Stroudsburg, PA, USA, Association for
Computational Linguistics (2010)

22. Davidov, D., Tsur, O., Rappoport, A.: Enhanced sentiment learning using twitter
hashtags and smileys. In: Proceedings of the 23rd International Conference on
Computational Linguistics: Posters. COLING ’10, Stroudsburg, PA, USA, Associ-
ation for Computational Linguistics (2010)

23. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-
level sentiment analysis. In: Proceedings of the conference on Human Language
Technology and Empirical Methods in Natural Language Processing. HLT ’05
(2005) 347–354

24. Dietterich, T.: An experimental comparison of three methods for constructing en-
sembles of decision trees: Bagging, boosting, and randomization. Machine Learning
40(2) (2000)

25. Tan, M., Wang, L., Tsang, I.W.: Learning sparse SVM for feature selection on very
high dimensional datasets. In: Proceedings of the 2010 International Conference
on Machine Learning. ICML ’10 (2010)

