
Prototype Support Vector Machines:
Supervised Classification in Complex Datasets

April Shen

Williams College
Computer Science Department

Advisor: Andrea Danyluk

May 13, 2013

Classification in Complex Datasets

Classification in Complex Datasets

Classification in Complex Datasets

Classification in Complex Datasets

Classification in Complex Datasets

Model Selection

I Finding the right model without knowing anything about your
data is tricky

I Requires making assumptions about data distributions

Ensemble Methods: AdaBoost

I Freund and Schapire, 1995 [3]

I Iteratively train classifiers on different samples of training data

I Focus on hard-to-capture data

I Requires choice of base classifier

Support Vector Machines (SVMs)

I Cortes and Vapnik, 1995 [1]
I Simplest case: separating hyperplane with minimum error and

maximum margin

I Unseparable case

Support Vector Machines (SVMs)

I Cortes and Vapnik, 1995 [1]
I Simplest case: separating hyperplane with minimum error and

maximum margin
I Unseparable case

Support Vector Machines (SVMs)

I Can nonlinearly map to high-dimensional spaces using kernels

I Requires choice of kernel function

Exemplar SVMs (ESVMs)

I Malisiewicz et al., 2011 [2]

I Train classifier with single positive instance and many
negative instances

I Ensemble of these can “vote” on new instances

Strengths and Weaknesses of ESVMs

I Strengths
I Ensemble of classifiers allows high accuracy
I Placement of models is specific to data distribution

I Weaknesses
I Fine-tuned to object recognition domain
I Data does sometime occur in clusters

From Exemplars to Prototypes

Initialization

I Seeding the positive sets

I Seeding the negative sets

Shifting

Shifting

Shifting

Shifting

Shifting

Shifting

Shifting

Prediction

I Choose best iteration’s ensemble based on accuracy on
validation set

I If a model classifies a new instance positively, makes a
weighted vote for its class

I Class with maximum number of votes is the predicted class

Strengths and Weaknesses

I Strengths
I Inherits benefits of ESVMs
I Balances flexibility with performance
I No need for model selection

I Weaknesses
I Potentially large ensemble sizes
I Slower than other algorithms
I Too many models for simple distributions
I Too few models for complex distributions

PSVMs with Weighted Sampling

I Sample data, so don’t overdo simple regions

I Resample using AdaBoost-style weighting, so focus on
difficult regions

Weighted Sampling

Weighted Sampling

Weighted Sampling

Strengths and Weaknesses

I Strengths
I Greater sensitivity to complex structure
I Smaller ensemble sizes

I Weaknesses
I Underperforms in simpler/smaller datasets
I More parameters must be optimized

Experiments

Remember: there is no free lunch!

Experiments

Algorithms

I C4.5 (decision tree)

I AdaBoosted C4.5

I Linear SVM (LibSVM)

I AdaBoosted Linear SVM

I Polynomial SVM

I Multilayer Perceptron

Datasets

I Synthetic

I UCI benchmarks

I Twitter

(Results averaged over 10-fold cross validation, using Weka’s
implementations and default parameters)

Synthetic Datasets

Synthetic Datasets

Synthetic Datasets

Results

Dataset PSVM C4.5
Boosted
C4.5

Linear SVM

isolated 90.9± 4.07 98.1±1.79 • 98.5±1.46 • 62.5± 0.0 ◦

striated 97.3± 1.66 69.4±13.4 ◦ 90.1±7.38 ◦ 48.5±3.94 ◦

spirals 21.8± 18.9 0.0± 0.0 ◦ 0.0± 0.0 ◦ 0.0± 0.0 ◦

iris 96.0± 4.42 94.0± 6.29 94.0± 5.54 98.7± 2.67

glass 52.8± 8.72 69.1±6.40 • 72.9±7.85 • 63.5±8.08 •

vehicle 79.4± 4.49 73.8±4.48 ◦ 75.7± 3.56 80.4± 4.50

segment 95.2± 1.18 97.1±0.93 • 98.1±0.85 • 96.3±0.93 •

twitter 55.8± 5.12 54.5± 2.89 60.5± 7.99 62.2±3.66 •

Results

Dataset PSVM
Boosted

Linear SVM
Polynomial

SVM
Multilayer
Perceptron

isolated 90.9± 4.07 62.5± 0.0 ◦ 81.9±4.38 ◦ 80.6±2.81 ◦

striated 97.3± 1.66 53.4±16.3 ◦ 72.8±4.18 ◦ 75.0±25.0 ◦

spirals 21.8± 18.9 5.63±8.97 ◦ 0.0± 0.0 ◦ 20.6± 28.9

iris 96.0± 4.42 97.3± 3.27 96.7± 4.47 97.3± 4.42

glass 52.8± 8.72 63.1±7.73 • 69.7±6.55 • 70.6±8.82 •

vehicle 79.4± 4.49 80.4± 4.23 80.4± 4.53 79.7± 4.61

segment 95.2± 1.18 96.1± 0.89 95.8± 1.38 96.2± 1.30

twitter 55.8± 5.12 62.2±4.15 • 52.3± 5.54 52.3± 5.54

Results

Dataset Sampling Regular

isolated 84.0± 7.0 90.9± 4.07 •

striated 96.9± 3.84 97.3± 1.66

spirals 60.7± 34.9 21.8± 18.9 ◦

iris 86.7± 13.0 96.0± 4.42

glass 47.6± 12.9 52.8± 8.72

vehicle 75.4± 3.83 79.4± 4.49

segment 94.4± 1.86 95.2± 1.18

twitter 54.0± 8.86 55.8± 5.12

Noise Experiments

I Synthetic and benchmarks are unrealistically clean

I Inject 10% noise in class labels

Results: Noisy Data

Dataset PSVM C4.5
Boosted
C4.5

Linear SVM

isolated 71.9± 7.71 84.8±4.36 • 83.6±4.65 • 59.3±3.67 ◦

striated 76.8± 7.42 60.3±7.24 ◦ 64.3±6.55 ◦ 52.0±2.86 ◦

spirals 29.0± 15.4 9.79±6.28 ◦ 9.79±6.28 ◦ 11.9±10.2 ◦

iris 88.7± 5.21 84.7± 7.33 83.3± 7.45 90.0± 6.83

glass 50.0± 5.50 62.2±7.46 • 66.3±8.87 • 53.7± 8.91

vehicle 68.1± 4.43 63.1±1.89 ◦ 67.6± 2.54 71.5± 3.57

segment 84.3± 2.18 85.5± 2.30 85.4± 2.23 84.1± 1.82

Results: Noisy Data

Dataset PSVM
Boosted

Linear SVM
Polynomial

SVM
Multilayer
Perceptron

isolated 71.9± 7.71 57.9±3.71 ◦ 75.5± 4.91 73.9± 3.51

striated 76.8± 7.42 56.8±7.36 ◦ 66.8±3.12 ◦ 67.4± 18.5

spirals 29.0± 15.4 16.9± 17.1 10.3±6.95 ◦ 17.1± 13.4

iris 88.7± 5.21 90.0± 6.15 90.0± 5.37 91.3± 6.70

glass 50.0± 5.50 57.5±7.90 • 61.6±8.95 • 61.7±4.14 •

vehicle 68.1± 4.43 69.1± 4.24 57.4±5.12 ◦ 71.0± 2.61

segment 84.3± 2.18 84.0± 2.12 67.8±3.95 ◦ 85.4± 2.51

Results: Noisy Data

Dataset Sampling Regular

isolated 68.8± 5.81 71.9± 7.71

striated 75.1± 10.1 76.8± 7.42

spirals 57.8± 28.6 29.0± 15.4 ◦

iris 76.7± 10.4 88.7± 5.21 •

glass 43.4± 9.40 50.0± 5.50 •

vehicle 59.1± 5.69 68.1± 4.43

segment 80.6± 3.15 84.3± 2.18 •

Final Ensembles

Noiseless Noisy

ESVM Regular Sampling Regular Sampling

isolated 720 323 124 122 70

striated 720 149 88 170 93

spirals 175 47 29 56 20

iris 135 54 13 24 11

glass 193 35 15 37 20

vehicle 761 110 61 113 64

segment 2079 453 172 323 164

twitter 540 42 32 X X

Summary of Results

I Win-Lose-Tie counts:

Noiseless Noisy

Regular 16 - 13 - 19 14 - 7 - 21

Sampling 14 - 23 - 11 13 - 23 - 6

I Performs very well in most difficult datasets

I Performs as well as other algorithms in all datasets

I Degrades gracefully with noise

I Standard PSVM outperforms version with sampling

Future Work

I Further empirical studies
I More datasets, especially real-world data
I More thorough comparison in noisy datasets
I How dataset complexity affects ensemble size

I Algorithm improvements
I Feature selection for each model (e.g. 1-norm SVMs [4])
I Different metrics besides Euclidean distance

I Prove can approximate functions to within certain error
I Given a minimum size of training set?
I Within a certain number of shifting iterations?

I Explicitly incorporate clustering

References

Corinna Cortes and Vladimir Vapnik.
Support-vector networks.
Machine Learning, 20(3), 1995.

Tomasz Malisiewicz, Abhinav Gupta, and Alexei A. Efros.
Ensemble of exemplar-SVMs for object detection and beyond.
In Proceedings of the 2011 International Conference on
Computer Vision, ICCV ’11, 2011.

Robert E. Schapire.
A brief introduction to boosting.
In Proceedings of the 1999 International Joint Conference on
Artificial Intelligence, IJCAI ’99, 1999.

J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani.
1-norm support vector machines.
In Advances in Neural Information Processing Systems 16,
2004.

BONUS MATERIAL

Final Ensembles

Final Ensembles

Train

Input: set of data, T
Parameters: number of iterations, s
1: Split data into training and validation sets, D and V .
2: P ← [[di] for di ∈ D]
3: N ← [ChooseNegatives(D, di) for di ∈ D]
4: for j = 0, . . . , s do
5: Ej ← []
6: for Pi ∈ P and Ni ∈ N do
7: Train a linear SVM, using Pi and Ni .
8: Add this SVM to Ej .
9: aj ← Test(V ,Ej)

10: P,N ← Shift(D,Ej ,P,N)
11: return ensemble Ej with highest accuracy on V

ChooseNegatives

Input: set of training data, D, and training instance, di
Parameters: number of negatives to return, k
1: Ni ← []
2: Di ← all instances in D of a different class label from di
3: Compute Euclidean distance from di to each element of Di .
4: Sort Di in ascending order by distance.
5: x ← closest negative in Di

6: ~n← (x − di)/||x − di ||
7: for dj ∈ Di do
8: if ~n · (dj − di) > 0 then
9: Add dj to Ni

10: if |Ni | = k then
11: return Ni

Shift

Input: set of training data, D; ensemble of models, E ;
positive and negative sets for each model, P and N

Parameters: probability to add to negative set, p
1: C ← [[] for dj ∈ D] (candidate models)
2: for mi ∈ E and dj ∈ D do
3: if mi classifies dj positively then
4: if dj ’s class matches mi ’s class then
5: Compute the distance of dj to mi ’s exemplar.
6: Add mi and its distance to the list of candidates Cj .
7: else
8: Add dj to mi ’s negative set Ni with some probability p.
9: for dj ∈ D do

10: Add dj to the positive set Pk of closest candidate model mk

11: for mi ∈ E do
12: if mi did not classify anything positively then
13: Remove mi from the ensemble
14: return P,N

Test

Input: set of testing data, D, and ensemble of models, E
1: for mi ∈ E and dj ∈ D do
2: if mi classifies dj positively then
3: Record weighted vote for mi ’s class.
4: for dj ∈ D do
5: Output class with max votes as prediction for dj .
6: a← classification accuracy over all data in D.
7: return a

TrainWithSampling

Input: set of training data, D
Parameters: number of iterations, r
1: Initialize all weights to 1/n.
2: S ← Sample(D)
3: for r iterations do
4: E ← Train(S)
5: a← Test(D,E)
6: Reweight(D, a)
7: S ← S ∪ Sample(D)
8: return E

Reweight

Input: set of training data, D, and accuracy of the ensemble, a
1: ε = 1− a
2: α = 1

2 ln
(
1−ε
ε

)
3: for di ∈ D do
4: if di was correctly classified then
5: weight(di) = 0
6: else
7: weight(di) = weight(di)× eα

z (z = normalization factor)

	Background
	AdaBoost
	Support Vector Machines
	Exemplar SVMs

	The Algorithm
	Motivation
	Main Components
	Pros and Cons

	Weighted Sampling
	Results
	Future Work

